首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ionizing radiation (IR) can pass through the human body easily, potentially causing severe damage to all biocomponents, which is associated with increasing oxidative stress. IR is employed in radiotherapy; however, in order to increase safety, it is necessary to minimize side effects through the use of radioprotectors. Water-soluble derivatives of fullerene exhibit antiradical and antioxidant properties, and these compounds are regarded as potential candidates for radioprotectors. We examined the ability of fullerenol C60(OH)36 to protect human erythrocytes, including the protection of the erythrocytal antioxidant system against high-energy electrons. Human erythrocytes irradiated with high-energy [6 MeV] electrons were treated with C60(OH)36 (150 µg/mL), incubated and haemolyzed. The radioprotective properties of fullerenol were determined by examining the antioxidant enzymes activity in the hemolysate, the concentration of -SH groups, as well as by determining erythrocyte microviscosity. The irradiation of erythrocytes (650 and 1300 Gy) reduces the number of thiol groups; however, an attenuation of this harmful effect is observed (p < 0.05) in the presence of C60(OH)36. Although no significant effect of fullerenol was recorded on catalase activity, which was preserved in both control and test samples, a more active protection of other enzymes was evident. An irradiation-induced decrease in the activity of glutathione peroxidase and glutathione reductase became an increase in the activity of those two enzymes in samples irradiated in the presence of C60(OH)36 (p < 0.05 and p < 0.05, respectively). The fourth studied enzyme, glutathione transferase, decreased (p < 0.05) its activity in the irradiated hemolysate treated with C60(OH)36, thus, indicating a lower level of ROS in the system. However, the interaction of fullerenol with the active centre of the enzyme cannot be excluded. We also noticed that radiation caused a dose-dependent decrease in the erythrocyte microviscosity, and the presence of C60(OH)36 reduced this effect (p < 0.05). Overall, we point to the radioprotective effect of C60(OH)36 manifested as the protection of the antioxidant enzymes of human erythrocytes against IR-induced damage, which has not been the subject of intense research so far.  相似文献   

2.
The effect of the interaction between fullerenol C60(OH)36 (FUL) and alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae and human serum albumin (HSA) was studied by absorption spectroscopy, fluorescence spectroscopy, and time-resolved fluorescence spectroscopy. As shown in the study, the fluorescence intensities of ADH and HSA at excitation wavelengths λex = 280 nm (Trp, Tyr) and λex = 295 nm (Trp) are decreased with the increase in the FUL concentration. The results of time-resolved measurements indicate that both quenching mechanisms, dynamic and static, are present. The binding constant Kb and the number of binding sites were obtained for HSA and ADH. Thus, the results indicated the formation of FUL complexes and proteins. However, the binding of FUL to HSA is much stronger than that of ADH. The transfer of energy from the protein to FUL was also proved.  相似文献   

3.
Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress.  相似文献   

4.
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.  相似文献   

5.
Erythrocytes are highly specialized cells in human body, and their main function is to ensure the gas exchanges, O2 and CO2, within the body. The exposure to microgravity environment leads to several health risks such as those affecting red blood cells. In this work, we investigated the changes that occur in the structure and function of red blood cells under simulated microgravity, compared to terrestrial conditions, at different time points using biochemical and biophysical techniques. Erythrocytes exposed to simulated microgravity showed morphological changes, a constant increase in reactive oxygen species (ROS), a significant reduction in total antioxidant capacity (TAC), a remarkable and constant decrease in total glutathione (GSH) concentration, and an augmentation in malondialdehyde (MDA) at increasing times. Moreover, experiments were performed to evaluate the lipid profile of erythrocyte membranes which showed an upregulation in the following membrane phosphocholines (PC): PC16:0_16:0, PC 33:5, PC18:2_18:2, PC 15:1_20:4 and SM d42:1. Thus, remarkable changes in erythrocyte cytoskeletal architecture and membrane stiffness due to oxidative damage have been found under microgravity conditions, in addition to factors that contribute to the plasticity of the red blood cells (RBCs) including shape, size, cell viscosity and membrane rigidity. This study represents our first investigation into the effects of microgravity on erythrocytes and will be followed by other experiments towards understanding the behaviour of different human cell types in microgravity.  相似文献   

6.
Star‐shaped macromolecules with six arms of polystyrene grafted onto a fullerene C60 core, or fullerene‐containing polystyrene (FPS), were used for the modification of poly(phenylene oxide) (PPO) and the preparation of a dense thin‐film membrane. The membrane structure was studied using scanning electron microscopy. The effect of FPS modifier on membrane density and mass transfer of methanol and ethylene glycol through the membrane was studied. Sorption and pervaporation tests were used to determine degree of sorption, diffusion coefficients, flux through the membrane and separation factor. In the pervaporation of a methanol–ethylene glycol mixture over the concentration range of 10–30 wt% methanol in the feed, all membranes showed high affinity to methanol. The separation factor reached a maximum at 5 wt% FPS in the membrane. The PPO/FPS membranes exhibit the best separation properties when the feed is enriched with ethylene glycol. © 2016 Society of Chemical Industry  相似文献   

7.
Betulin and its derivatives, 28-propyne derivative EB5 and 29-diethyl phosphonate analog ECH147, are promising compounds in anti-tumor activity studies. However, their effect on kidney cells has not yet been studied. The study aimed to determine whether betulin and its derivatives—EB5 and ECH147—influence the viability and oxidative status of human renal proximal tubule epithelial cells (RPTECs). The total antioxidant capacity of cells (TEAC), lipid peroxidation product malondialdehyde (MDA) level, and activity of antioxidant enzymes (SOD, CAT, and GPX) were evaluated. Additionally, the mRNA level of genes encoding antioxidant enzymes was assessed. Cisplatin and 5-fluorouracil were used as reference substances. Betulin and its derivatives affected the viability and antioxidant systems of RPTECs. Betulin strongly reduced TEAC in a concentration-dependent manner. All tested compounds caused an increase in MDA levels. The activity of SOD, CAT, and GPX, and the mRNA profiles of genes encoding antioxidant enzymes depended on the tested compound and its concentration. Betulin showed an cisplatin-like effect, indicating its nephrotoxic potential. Betulin derivatives EB5 and ECH147 showed different impacts on the antioxidant system, which gives hope that these compounds will not cause severe consequences for the kidneys in vivo.  相似文献   

8.
Chitosan-based edible coatings represent an eco-friendly and biologically safe preservative tool to reduce qualitative decay of fresh and ready-to-eat fruits during post-harvest life due to their lack of toxicity, biodegradability, film-forming properties, and antimicrobial actions. Chitosan-based coatings modulate or control oxidative stress maintaining in different manner the appropriate balance of reactive oxygen species (ROS) in fruit cells, by the interplay of pathways and enzymes involved in ROS production and the scavenging mechanisms which essentially constitute the basic ROS cycle. This review is carried out with the aim to provide comprehensive and updated over-view of the state of the art related to the effects of chitosan-based edible coatings on anti-oxidant systems, enzymatic and non-enzymatic, evaluating the induced oxidative damages during storage in whole and ready-to-eat fruits. All these aspects are broadly reviewed in this review, with particular emphasis on the literature published during the last five years.  相似文献   

9.
Oxidative stress caused by reactive oxygen species (ROS, O2, HO•, and H2O2) affects the aging process and the development of several diseases. A new frontier on its prevention includes functional foods with both specific probiotics and natural extracts as antioxidants. In this work, Panax ginseng C.A. Meyer berries extract was characterized for the presence of beneficial molecules (54.3% pectin-based polysaccharides and 12% ginsenosides), able to specifically support probiotics growth (OD600nm > 5) with a prebiotic index of 0.49. The administration of the extract to a probiotic consortium induced the production of short-chain fatty acids (lactic, butyric, and propionic acids) and other secondary metabolites derived from the biotransformation of Ginseng components. Healthy and tumoral colorectal cell lines (CCD841 and HT-29) were then challenged with these metabolites at concentrations of 0.1, 0.5, and 1 mg/mL. The cell viability of HT-29 decreased in a dose-dependent manner after the exposition to the metabolites, while CCD841 vitality was not affected. Regarding ROS production, the metabolites protected CCD841 cells, while ROS levels were increased in HT-29 cells, potentially correlating with the less functionality of glutathione S-transferase, catalase, and total superoxide dismutase enzymes, and a significant increase in oxidized glutathione.  相似文献   

10.
The circadian system synchronizes daily with the day–night cycle of our environment. Disruption of this rhythm impacts the emergence and development of many diseases caused, for example, by the overproduction of free radicals, leading to oxidative damage of cellular components. The goal of this study was to determine the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione transferase (GST), glutathione reductase (R-GSSG), and the concentration of glutathione (GSH) in the circadian rhythm. The study group comprised 66 healthy volunteers (20–50 years; 33 women; 33 men). The blood was collected at 2, 8 a.m., and 2, 8 p.m. All samples marked the serum melatonin concentration to confirm the correct sleeping rhythm and wakefulness throughout the day. The activity of study enzymes and the concentration of GSH were measured by the spectrophotometric method. Confirmed the existence of circadian regulation of oxidative stress enzymes except for GST activity. The peak of activity of study enzymes and GSH concentration was observed at 2 a.m. The increased activity of enzymes and the increase in GSH concentration observed at night indicate that during sleep, processes allowing to maintain of the redox balance are intensified, thus limiting the formation of oxidative stress.  相似文献   

11.
As an economically important flatfish in Asia, Japanese flounder is threatened by continuously rising temperatures due to global warming. To understand the molecular responses of this species to temperature stress, adult Japanese flounder individuals were treated with two kinds of heat stress—a gradual temperature rise (GTR) and an abrupt temperature rise (ATR)—in aquaria under experimental conditions. Changes in histopathology, programmed cell death levels and the oxidative stress status of gills were investigated. Histopathology showed that the damage caused by ATR stress was more serious. TUNEL signals confirmed this result, showing more programmed cell death in the ATR group. In addition, reactive oxygen species (ROS) levels and the 8-O-hDG contents of both the GTR and ATR groups increased significantly, and the total superoxide dismutase (T-SOD) activities and total antioxidant capacity (T-AOC) levels decreased in the two stressed groups, which showed damage to antioxidant systems. Meanwhile, RNA-seq was utilized to illustrate the molecular mechanisms underyling gill damage. Compared to the control group of 18 °C, 507 differentially expressed genes (DEGs) were screened in the GTR group; 341 were up-regulated and 166 were down-regulated, and pathway enrichment analysis indicated that they were involved in regulation and adaptation, including chaperone and folding catalyst pathways, the mitogen-activated protein kinase signaling (MAPK) pathway and DNA replication protein pathways. After ATR stress, 1070 DEGs were identified, 627 were up-regulated and 423 were down-regulated, and most DEGs were involved in chaperone and folding catalyst and DNA-related pathways, such as DNA replication proteins and nucleotide excision repair. The annotation of DEGs showed the great importance of heat shock proteins (HSPs) in protecting Japanese flounder from heat stress injury; 12 hsp genes were found after GTR, while 5 hsp genes were found after ATR. In summary, our study records gill dysfunction after heat stress, with different response patterns observed in the two experimental designs; chaperones were activated to defend heat stress after GTR, while replication was almost abandoned due to the severe damage consequent on ATR stress.  相似文献   

12.
As the world undergoes aging, the number of age-related diseases has increased. One of them is disease related to retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration, causing vision loss without physical damage in the ocular system. It is the leading cause of blindness, with no cure. Although the exact pathogenesis is still unknown, the research shows that oxidative stress is one of the risk factors. Various molecules have been reported as anti-oxidative materials; however, the disease has not yet been conquered. Here, we would like to introduce photobiomodulation (PBM). PBM is a non-invasive treatment based on red and near-infrared light and has been used to cure various diseases by regulating cellular functions. Furthermore, recent studies showed its antioxidant effect, and due to this reason, PBM is arising as a new treatment for ocular disease. In this study, we confirm the antioxidant effect of PBM in retinal pigment epithelium via an RPE model with hypoxia. The function of RPE is protected by PBM against damage from hypoxia. Furthermore, we observed the protective mechanism of PBM by its suppression effect on reactive oxygen species generation. These results indicate that PBM shows great potential to cure RPE degeneration to help patients with blindness.  相似文献   

13.
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function.  相似文献   

14.
Anemia is a commonly observed consequence of whole-body exposure to a dose of X-ray or gamma irradiation of the order of the mean lethal dose in mammals, and it is an important factor for the determination of the survival of animals. The aim of this study was to unravel the effect of laser-driven ultrashort pulsed electron beam (UPEB) irradiation on the process of erythropoiesis and the redox state in the organism. Wistar rats were exposed to laser-driven UPEB irradiation, after which the level of oxidative stress and the activities of different antioxidant enzymes, as well as blood smears, bone marrow imprints and sections, erythroblastic islets, hemoglobin and hematocrit, hepatic iron, DNA, and erythropoietin levels, were assessed on the 1st, 3rd, 7th, 14th, and 28th days after irradiation. Despite the fact that laser-driven UPEB irradiation requires quite low doses and repetition rates to achieve the LD50 in rats, our findings suggest that whole-body exposure with this new type of irradiation causes relatively mild anemia in rats, with subsequent fast recovery up to the 28th day. Moreover, this novel type of irradiation causes highly intense processes of oxidative stress, which, despite being relatively extinguished, did not reach the physiologically stable level even at the 28th day after irradiation due to the violations in the antioxidant system of the organism.  相似文献   

15.
In this study, pulsed electric fields (PEF) treatments and their effects on the structure of vitamin C (VIT-C) were estimated by fluorescence and Fourier transform infrared (FT-IR) spectroscopy, the relative content of VIT-C was measured by HPLC and the antioxidant properties of treated VIT-C by DPPH radical scavenging as well as reducing power tests. The fluorescence intensity of treated VIT-C increased slightly compared to the untreated VIT-C. Moreover, the effect of PEF on the structure of VIT-C was observed using the FT-IR spectra. These phenomena indicated that the PEF affected the conformation of VIT-C, which promoted the VIT-C isomer transformed enol-form into keto-form. In addition, the PEF treatments did not suffer the damage to VIT-C and could slow down the oxidation process in involving of experimental conditions by HPLC. The antioxidant properties of the treated VIT-C were enhanced, which was proved by radical scavenging and also the reducing power tests.  相似文献   

16.
17.
测定了球碳C60/C70及其衍生物C60Xn/C70Xn的加氢汽油溶液分别与环烷酸钴[Co(naph)2]反应的紫外可见吸收光谱及C60Xn与Co(naph)2反应沉淀物的红外吸收光谱。结果表明:C60/C70及其衍生物均可与Co2+发生配位反应,形成π配体络合物,讨论了可能的反应机理。  相似文献   

18.
抗氧剂三(壬苯基)亚磷酸酯生产工艺改进   总被引:2,自引:0,他引:2  
郑维彬 《贵州化工》2002,27(4):17-19
介绍了三(壬苯基)亚磷酸酯生产工艺的改进,并对各种工艺因素的影响进行研究,找出最佳工艺条件。  相似文献   

19.
Background: Fullerenes and metallofullerenes can be considered promising nanopharmaceuticals themselves and as a basis for chemical modification. As reactive oxygen species homeostasis plays a vital role in cells, the study of their effect on genes involved in oxidative stress and anti-inflammatory responses are of particular importance. Methods: Human fetal lung fibroblasts were incubated with aqueous dispersions of C60, C70, and Gd@C82 in concentrations of 5 nM and 1.5 µM for 1, 3, 24, and 72 h. Cell viability, intracellular ROS, NOX4, NFκB, PRAR-γ, NRF2, heme oxygenase 1, and NAD(P)H quinone dehydrogenase 1 expression have been studied. Results & conclusion: The aqueous dispersions of C60, C70, and Gd@C82 fullerenes are active participants in reactive oxygen species (ROS) homeostasis. Low and high concentrations of aqueous fullerene dispersions (AFD) have similar effects. C70 was the most inert substance, C60 was the most active substance. All AFDs have both “prooxidant” and “antioxidant” effects but with a different balance. Gd@C82 was a substance with more pronounced antioxidant and anti-inflammatory properties, while C70 had more pronounced “prooxidant” properties.  相似文献   

20.
Living species are continuously subjected to all extrinsic forms of reactive oxidants and others that are produced endogenously. There is extensive literature on the generation and effects of reactive oxygen species (ROS) in biological processes, both in terms of alteration and their role in cellular signaling and regulatory pathways. Cells produce ROS as a controlled physiological process, but increasing ROS becomes pathological and leads to oxidative stress and disease. The induction of oxidative stress is an imbalance between the production of radical species and the antioxidant defense systems, which can cause damage to cellular biomolecules, including lipids, proteins and DNA. Cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants. However, it is often unclear how this translates into chemical reactions involving redox changes. This review addresses this question and includes a robust mechanistic explanation of the chemical reactions of ROS and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号