首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.  相似文献   

2.
Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion of stem and myeloid progenitor cells. Immunotherapy has revolutionized the care for other cancers such as solid tumors and lymphomas, and has the potential to effectively treat AML. There has been substantial progress in the developments of immunotherapeutic approaches for AML over the last several years, including the development of antibodies that further increase the innate immunogenicity of leukemia cells by the inhibition of NKG2D ligand—particularly MICA and MICB—shedding, chimeric proteins such as IL-15 superagonist that expand natural killer (NK) cells, blockers of immunologic checkpoints such as NKG2A, and chemicals that indirectly increase expression of immune stimulatory proteins in leukemia stem cells. Furthermore, cellular therapies have been designed to enable alloreactive immunity by allogeneic NK cells or target leukemia antigens such as mutated NPM1. These immunotherapeutic approaches have demonstrated remarkable efficacies in preclinical studies and have successfully transitioned to early phase clinical trials, to establish safety and initial signal of clinical activity. Here, we briefly discuss some of the most recent and impactful developments in the AML immunotherapy field and provide our perspectives for the future directions of this exciting and new therapeutic opportunity.  相似文献   

3.
Key features of chronic lymphocytic leukemia (CLL) are defects in the immune system and the ability of leukemic cells to evade immune defenses and induce immunosuppression, resulting in increased susceptibility to infections and disease progression. Several immune effectors are impaired in CLL, including T and natural killer (NK) cells. The role of T cells in defense against CLL and in CLL progression and immunotherapy has been extensively studied. Less is known about the role of NK cells in this leukemia, and data on NK cell alterations in CLL are contrasting. Besides studies showing that NK cells have intrinsic defects in CLL, there is a large body of evidence indicating that NK cell dysfunctions in CLL mainly depend on the escape mechanisms employed by leukemic cells. In keeping, it has been shown that NK cell functions, including antibody-dependent cellular cytotoxicity (ADCC), can be retained and/or restored after adequate stimulation. Therefore, due to their preserved ADCC function and the reversibility of CLL-related dysfunctions, NK cells are an attractive source for novel immunotherapeutic strategies in this disease, including chimeric antigen receptor (CAR) therapy. Recently, satisfying clinical responses have been obtained in CLL patients using cord blood-derived CAR-NK cells, opening new possibilities for further exploring NK cells in the immunotherapy of CLL. However, notwithstanding the promising results of this clinical trial, more evidence is needed to fully understand whether and in which CLL cases NK cell-based immunotherapy may represent a valid, alternative/additional therapeutic option for this leukemia. In this review, we provide an overview of the current knowledge about phenotypic and functional alterations of NK cells in CLL and the mechanisms by which CLL cells circumvent NK cell-mediated immunosurveillance. Additionally, we discuss the potential relevance of using NK cells in CLL immunotherapy.  相似文献   

4.
Glioblastoma (GBM) is the leading malignant intracranial tumor and is associated with a poor prognosis. Highly purified, activated natural killer (NK) cells, designated as genuine induced NK cells (GiNKs), represent a promising immunotherapy for GBM. We evaluated the anti-tumor effect of GiNKs in association with the programmed death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint pathway. We determined the level of PD-1 expression, a receptor known to down-regulate the immune response against malignancy, on GiNKs. PD-L1 expression on glioma cell lines (GBM-like cell line U87MG, and GBM cell line T98G) was also determined. To evaluate the anti-tumor activity of GiNKs in vivo, we used a xenograft model of subcutaneously implanted U87MG cells in immunocompromised NOG mice. The GiNKs expressed very low levels of PD-1. Although PD-L1 was expressed on U87MG and T98G cells, the expression levels were highly variable. Our xenograft model revealed that the retro-orbital administration of GiNKs and interleukin-2 (IL-2) prolonged the survival of NOG mice bearing subcutaneous U87MG-derived tumors. PD-1 blocking antibodies did not have an additive effect with GiNKs for prolonging survival. GiNKs may represent a promising cell-based immunotherapy for patients with GBM and are minimally affected by the PD-1/PD-L1 immune evasion axis in GBM.  相似文献   

5.
Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.  相似文献   

6.
Natural killer (NK) cells, members of the innate immune system, play an important role in the rejection of HLA class I negative tumor cells. Hence, a therapeutic vaccine, which can activate NK cells in addition to cells of the adaptive immune system might induce a more comprehensive cellular response, which could lead to increased tumor elimination. Dendritic cells (DCs) are capable of activating and expanding NK cells, especially when the NFκB pathway is activated in the DCs thereby leading to the secretion of the cytokine IL-12. Another prominent NK cell activator is IL-15, which can be bound by the IL-15 receptor alpha-chain (IL-15Rα) to be transpresented to the NK cells. However, monocyte-derived DCs do neither secrete IL-15, nor express the IL-15Rα. Hence, we designed a chimeric protein consisting of IL-15 and the IL-15Rα. Upon mRNA electroporation, the fusion protein was detectable on the surface of the DCs, and increased the potential of NFκB-activated, IL-12-producing DC to activate NK cells in an autologous cell culture system with ex vivo-generated cells from healthy donors. These data show that a chimeric IL-15/IL-15Rα molecule can be expressed by monocyte-derived DCs, is trafficked to the cell surface, and is functional regarding the activation of NK cells. These data represent an initial proof-of-concept for an additional possibility of further improving cellular DC-based immunotherapies of cancer.  相似文献   

7.
CAR-T (chimeric antigen receptor T) cells have emerged as a milestone in the treatment of patients with refractory B-cell neoplasms. However, despite having unprecedented efficacy against hematological malignancies, the treatment is far from flawless. Its greatest drawbacks arise from a challenging and expensive production process, strict patient eligibility criteria and serious toxicity profile. One possible solution, supported by robust research, is the replacement of T lymphocytes with NK cells for CAR expression. NK cells seem to be an attractive vehicle for CAR expression as they can be derived from multiple sources and safely infused regardless of donor–patient matching, which greatly reduces the cost of the treatment. CAR-NK cells are known to be effective against hematological malignancies, and a growing number of preclinical findings indicate that they have activity against non-hematological neoplasms. Here, we present a thorough overview of the current state of knowledge regarding the use of CAR-NK cells in treating various solid tumors.  相似文献   

8.
Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectin-like receptor NKG2D. To redirect NK cells against tumor cells, we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the 'knob into hole' heterodimerization strategy, in which 'knob' and 'hole' variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site.  相似文献   

9.
Invariant natural killer T (iNKT) cells have the capacity to mount potent anti-tumor reactivity and have therefore become a focus in the development of cell-based immunotherapy. iNKT cells attack tumor cells using multiple mechanisms with a high efficacy; however, their clinical application has been limited because of their low numbers in cancer patients and difficulties in infiltrating solid tumors. In this study, we aimed to overcome these critical limitations by using α-GalCer, a synthetic glycolipid ligand specifically activating iNKT cells, to recruit iNKT to solid tumors. By adoptively transferring human iNKT cells into tumor-bearing humanized NSG mice and administering a single dose of tumor-localized α-GalCer, we demonstrated the rapid recruitment of human iNKT cells into solid tumors in as little as one day and a significantly enhanced tumor killing ability. Using firefly luciferase-labeled iNKT cells, we monitored the tissue biodistribution and pharmacokinetics/pharmacodynamics (PK/PD) of human iNKT cells in tumor-bearing NSG mice. Collectively, these preclinical studies demonstrate the promise of an αGC-driven iNKT cell-based immunotherapy to target solid tumors with higher efficacy and precision.  相似文献   

10.
The innate immune system’s natural killer (NK) cells exert their cytolytic function against a variety of pathological challenges, including tumors and virally infected cells. Their activation depends on net signaling mediated via inhibitory and activating receptors that interact with specific ligands displayed on the surfaces of target cells. The CD94/NKG2C heterodimer is one of the NK activating receptors and performs its function by interacting with the trimeric ligand comprised of the HLA-E/β2m/nonameric peptide complex. Here, simulations of the all-atom multi-microsecond molecular dynamics in five immune complexes provide atomistic insights into the receptor–ligand molecular recognition, as well as the molecular events that facilitate the NK cell activation. We identify NKG2C, the HLA-Eα2 domain, and the nonameric peptide as the key elements involved in the molecular machinery of signal transduction via an intertwined hydrogen bond network. Overall, the study addresses the complex intricacies that are necessary to understand the mechanisms of the innate immune system.  相似文献   

11.
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults. Natural Killer (NK) cells are potent cytotoxic effector cells against tumor cells inducing GBM cells; therefore, NK cell based- immunotherapy might be a promising target in GBM. T cell immunoglobulin mucin family member 3 (TIM3), a receptor expressed on NK cells, has been suggested as a marker of dysfunctional NK cells. We established TIM3 knockout in NK cells, using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). Electroporating of TIM3 exon 2- or exon 5-targeting guide RNA- Cas9 protein complexes (RNPs) inhibited TIM3 expression on NK cells with varying efficacy. T7 endonuclease I mutation detection assays showed that both RNPs disrupted the intended genome sites. The expression of other checkpoint receptors, i.e., programmed cell death 1 (PD1), Lymphocyte-activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and TACTILE (CD96) were unchanged on the TIM3 knockout NK cells. Real time cell growth assays revealed that TIM3 knockout enhanced NK cell–mediated growth inhibition of GBM cells. These results demonstrated that TIM3 knockout enhanced human NK cell mediated cytotoxicity on GBM cells. Future, CRISPR-Cas9 mediated TIM3 knockout in NK cells may prove to be a promising immunotherapeutic alternative in patient with GBM.  相似文献   

12.
Despite extensive preclinical research on immunotherapeutic approaches, malignant glioma remains a devastating disease of the central nervous system for which standard of care treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and antibodies have been identified, leading to the development of chimeric antigen receptors (CAR), which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities, a plethora of CARs has been designed and tested for glioma, with promising signs of biological activity. In this review, we describe glioma antigens that have been targeted using CAR T cells preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming antigenic limitations.  相似文献   

13.
Human hepatocellular carcinoma (HCC) is the most common and even worse at prognosis. The patients with HCC which accompanied by other diseases, such as cirrhosis, can be limited in various treatments, such as chemotherapy, not HCC patients without other diseases. NLRP3 inflammasome plays an important role in the innate immune response, but emerging evidence has indicated that the NLRP3 inflammasome is implicated in all stages of cancer development. Various cells express NLRP3 protein through the autocrine or paracrine signaling in their environment, but NK cells do not. The expanding evidence shows that patients who suffer from liver cancers have a low frequency of natural killer (NK) cells, and the function of these cells is also impaired. Thus, we examined how the expression of NLRP3 in HCC cells affects cancer surveillance by NK cells in a state of a co-culture of both cells. When the expression of NLRP3 in HCC cells was ablated, MICA/B on the surface of HCC cells was upregulated through the lowered expression of matrix metalloproteinase. The expression of MICA on the surface of HCC cells interacted with the NKG2D receptor on NK-92 cells, which led to NK cytotoxicity. Furthermore, in a xenograft mice model, NLRP3 KO HCC cells delayed tumor development and metastasis as well as increased the sensitivity to NK cell cytotoxicity. Taken together, NLRP3 KO in HCC could enhance NK immunosurveillance through an interaction of NKG2D-MICA.  相似文献   

14.
Cell-based cancer immunotherapy, such as chimeric antigen receptor (CAR) engineered T and natural killer (NK) cell therapies, has become a revolutionary new pillar in cancer treatment. Interleukin 15 (IL-15), a potent immunostimulatory cytokine that potentiates T and NK cell immune responses, has demonstrated the reliability and potency to potentially improve the therapeutic efficacy of current cell therapy. Structurally similar to interleukin 2 (IL-2), IL-15 supports the persistence of CD8+ memory T cells while inhibiting IL-2-induced T cell death that better maintains long-term anti-tumor immunity. In this review, we describe the biology of IL-15, studies on administrating IL-15 and/or its derivatives as immunotherapeutic agents, and IL-15-armored immune cells in adoptive cell therapy. We also discuss the advantages and challenges of incorporating IL-15 in cell-based immunotherapy and provide directions for future investigation.  相似文献   

15.
Endometriosis is a gynaecological disease defined by the growth of endometrium-like tissue outside the uterus. The disease is present in approximately 5–10% of women of reproductive age and causes pelvic pain and infertility. The pathophysiology is not completely understood, but retrograde menstruation and deficiency in natural killer (NK) cells that clear endometriotic cells in the peritoneal cavity play an important role. Nowadays, hormonal therapy and surgery to remove endometriosis lesions are used as treatment. However, these therapies do not work for all patients, and hormonal therapy prevents patients from getting pregnant. Therefore, new treatment strategies should be developed. Since the cytotoxicity of NK cells is decreased in endometriosis, we performed a literature search into the possibility of NK cell therapy. Available treatment options include the inhibition of receptor–ligand interaction for KIR2DL1, NKG2A, LILRB1/2, and PD-1/PD-L1; inhibition of TGF-β; stimulation of NK cells with IL-2; and mycobacterial treatment with BCG. In preclinical work, these therapies show promising results but unfortunately have side effects, which have not specifically been studied in endometriosis patients. Before NK cell treatment can be used in the clinic, more research is needed.  相似文献   

16.
Cancer stem cells (CSCs) can be induced from differentiated cancer cells in the tumor microenvironment or in response to treatments and exhibit chemo- and radioresistance, leading to tumor recurrence and metastasis. We previously reported that triple negative breast cancer (TNBC) cells with acquired radioresistance exhibited more aggressive features due to an increased CSC population. Therefore, here, we isolated CSCs from radiotherapy-resistant (RT-R)-TNBC cells and investigated the effects of these CSCs on tumor progression and NK cell-mediated cytotoxicity. Compared to MDA-MB-231 and RT-R-MDA-MB-231 cells, CD24−/low/CD44+ cells isolated from RT-R-MDA-MB-231 cells showed increased proliferation, migration and invasion abilities, and induced expression of tumor progression-related molecules. Moreover, similar to MDA-MB-231 cells, CD24−/low/CD44+ cells recruited NK cells but suppressed NK cell cytotoxicity by regulating ligands for NK cell activation. In an in vivo model, CD24−/low/CD44+ cell-injected mice showed enhanced tumor progression and lung metastasis via upregulation of tumor progression-related molecules and altered host immune responses. Specifically, NK cells were recruited into the peritumoral area tumor but lost their cytotoxicity due to the altered expression of activating and inhibitory ligands on tumors. These results suggest that CSCs may cause tumor evasion of immune cells, resulting in tumor progression.  相似文献   

17.
Immunotherapy using chimeric antigen receptor (CAR) T cells is a rapidly emerging modality that engineers T cells to redirect tumor-specific cytotoxicity. CAR T cells have been well characterized for their efficacy against B cell malignancies, and rigorously studied in other types of tumors. Preclinical evaluation of CAR T cell function, including direct tumor killing, cytokine production, and memory responses, is crucial to the development and optimization of CAR T cell therapies. Such comprehensive examinations are usually performed in different types of models. Model establishment should focus on key challenges in the clinical setting and the capability to generate reliable data to indicate CAR T cell therapeutic potency in the clinic. Further, modeling the interaction between CAR T cells and tumor microenvironment provides additional insight for the future endeavors to enhance efficacy, especially against solid tumors. This review will summarize both in vitro and in vivo models for CAR T cell functional evaluation, including how they have evolved with the needs of CAR T cell research, the information they can provide for preclinical assessment of CAR T cell products, and recent technology advances to test CAR T cells in more clinically relevant models.  相似文献   

18.
The prognosis of multiple myeloma (MM) has drastically improved owing to the development of new drugs, such as proteasome inhibitors and immunomodulatory drugs. Nevertheless, MM is an extremely challenging disease, and many patients are still refractory to the existing therapies, thus requiring new treatment alternatives. Venetoclax is a selective, orally bioavailable inhibitor of BCL-2 that shows efficacy in MM not only as a single agent but also in combination therapy, especially for MM patients with translocation t(11;14). However, many patients are refractory to this drug. Here, we treated the MM cell lines KMS12PE and KMS27 with a combination treatment of venetoclax targeting BCL-2 and daratumumab targeting CD38 to evaluate the synergistic cytotoxicity of these drugs in vitro. MM cell lines were co-cultured with natural killer (NK) cells at an effector:target ratio of 0.3:1 in the presence of serial concentrations of daratumumab and venetoclax, and the resulting apoptotic MM cells were detected by flow cytometry using annexin V. These results indicated that the antibody-dependent cell-mediated NK cytotoxicity was enhanced in KMS12PE and KMS27 cells harboring t(11;14) with a high BCL-2 expression, suggesting that the combination treatment of venetoclax and daratumumab should be especially effective in patients with these characteristics.  相似文献   

19.
20.
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号