首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.  相似文献   

4.
Exposure to high altitude environment leads to skeletal muscle atrophy. As a hormone secreted by skeletal muscles after exercise, irisin contributes to promoting muscle regeneration and ameliorating skeletal muscle atrophy, but its role in hypoxia-induced skeletal muscle atrophy is still unclear. Our results showed that 4 w of hypoxia exposure significantly reduced body weight and gastrocnemius muscle mass of mice, as well as grip strength and the duration time of treadmill exercise. Hypoxic treatment increased HIF-1α expression and decreased both the circulation level of irisin and its precursor protein FNDC5 expression in skeletal muscle. In in vitro, CoCl2-induced chemical hypoxia and 1% O2 ambient hypoxia both reduced FNDC5, along with the increase in HIF-1α. Moreover, the decline in the area and diameter of myotubes caused by hypoxia were rescued by inhibiting HIF-1α via YC-1. Collectively, our research indicated that FNDC5/irisin was negatively regulated by HIF-1α and could participate in the regulation of muscle atrophy caused by hypoxia.  相似文献   

5.
Increased proliferation of pulmonary arterial smooth muscle cells (PASMCs) in response to chronic hypoxia contributes to pulmonary vascular remodeling in pulmonary hypertension (PH). PH shares numerous similarities with cancer, including a metabolic shift towards glycolysis. In lung cancer, adenylate kinase 4 (AK4) promotes metabolic reprogramming and metastasis. Against this background, we show that AK4 regulates cell proliferation and energy metabolism of primary human PASMCs. We demonstrate that chronic hypoxia upregulates AK4 in PASMCs in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. RNA interference of AK4 decreases the viability and proliferation of PASMCs under both normoxia and chronic hypoxia. AK4 silencing in PASMCs augments mitochondrial respiration and reduces glycolytic metabolism. The observed effects are associated with reduced levels of phosphorylated protein kinase B (Akt) as well as HIF-1α, indicating the existence of an AK4-HIF-1α feedforward loop in hypoxic PASMCs. Finally, we show that AK4 levels are elevated in pulmonary vessels from patients with idiopathic pulmonary arterial hypertension (IPAH), and AK4 silencing decreases glycolytic metabolism of IPAH-PASMCs. We conclude that AK4 is a new metabolic regulator in PASMCs interacting with HIF-1α and Akt signaling pathways to drive the pro-proliferative and glycolytic phenotype of PH.  相似文献   

6.
Low-density lipoprotein receptor-related protein 5 (LRP5) has been studied as a co-receptor for Wnt/β-catenin signaling. However, its role in the ischemic myocardium is largely unknown. Here, we show that LRP5 may act as a negative regulator of ischemic heart injury via its interaction with prolyl hydroxylase 2 (PHD2), resulting in hypoxia-inducible factor-1α (HIF-1α) degradation. Overexpression of LRP5 in cardiomyocytes promoted hypoxia-induced apoptotic cell death, whereas LRP5-silenced cardiomyocytes were protected from hypoxic insult. Gene expression analysis (mRNA-seq) demonstrated that overexpression of LRP5 limited the expression of HIF-1α target genes. LRP5 promoted HIF-1α degradation, as evidenced by the increased hydroxylation and shorter stability of HIF-1α under hypoxic conditions through the interaction between LRP5 and PHD2. Moreover, the specific phosphorylation of LRP5 at T1492 and S1503 is responsible for enhancing the hydroxylation activity of PHD2, resulting in HIF-1α degradation, which is independent of Wnt/β-catenin signaling. Importantly, direct myocardial delivery of adenoviral constructs, silencing LRP5 in vivo, significantly improved cardiac function in infarcted rat hearts, suggesting the potential value of LRP5 as a new target for ischemic injury treatment.  相似文献   

7.
8.
4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats.  相似文献   

9.
10.
Mechanical ventilation (MV) is required to maintain life for patients with sepsis-related acute lung injury but can cause diaphragmatic myotrauma with muscle damage and weakness, known as ventilator-induced diaphragm dysfunction (VIDD). Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in inducing inflammation and apoptosis. Low-molecular-weight heparin (LMWH) was proven to have anti-inflammatory properties. However, HIF-1α and LMWH affect sepsis-related diaphragm injury has not been investigated. We hypothesized that LMWH would reduce endotoxin-augmented VIDD through HIF-1α. C57BL/6 mice, either wild-type or HIF-1α–deficient, were exposed to MV with or without endotoxemia for 8 h. Enoxaparin (4 mg/kg) was administered subcutaneously 30 min before MV. MV with endotoxemia aggravated VIDD, as demonstrated by increased interleukin-6 and macrophage inflammatory protein-2 levels, oxidative loads, and the expression of HIF-1α, calpain, caspase-3, atrogin-1, muscle ring finger-1, and microtubule-associated protein light chain 3-II. Disorganized myofibrils, disrupted mitochondria, increased numbers of autophagic and apoptotic mediators, substantial apoptosis of diaphragm muscle fibers, and decreased diaphragm function were also observed (p < 0.05). Endotoxin-exacerbated VIDD and myonuclear apoptosis were attenuated by pharmacologic inhibition by LMWH and in HIF-1α–deficient mice (p < 0.05). Our data indicate that enoxaparin reduces endotoxin-augmented MV-induced diaphragmatic injury, partially through HIF-1α pathway inhibition.  相似文献   

11.
Mutations in the Von Hippel–Lindau (VHL) gene are the driving force in many forms of clear cell renal cell carcinoma (ccRCC) and promote hypoxia-inducible factor (HIF)-dependent tumor proliferation, metastasis and angiogenesis. Despite the progress that has already been made, ccRCC generally remain resistant to conventional therapies and ccRCC patients suffer from metastasis and acquired resistance, highlighting the need for novel therapeutic options. Cysteinyl leukotriene receptor 1 (CysLTR1) antagonists, like zafirlukast, are administered in bronchial asthma to control eicosanoid signaling. Intriguingly, long-term use of zafirlukast decreases cancer risk and leukotriene receptor antagonists inhibit tumor growth, but the mechanisms still remain unexplored. Therefore, we aim to understand the mechanisms of zafirlukast-mediated cell death in ccRCC cells. We show that zafirlukast induces VHL-dependent and TNFα-independent non-apoptotic and non-necroptotic cell death in ccRCC cells. Cell death triggered by zafirlukast could be rescued with antioxidants and the PARP-1 inhibitor Olaparib, and additionally relies on HIF-2α. Finally, MG-132-mediated proteasome inhibition sensitized VHL wild-type cells to zafirlukast-induced cell death and inhibition of HIF-2α rescued zafirlukast- and MG-132-triggered cell death. Together, these results highlight the importance of VHL, HIF and proteasomal degradation in zafirlukast-induced oxidative cell death with potentially novel therapeutic implications for ccRCC.  相似文献   

12.
13.
A high-fat diet is responsible for hepatic fat accumulation that sustains chronic liver damage and increases the risks of steatosis and hepatocellular carcinoma (HCC). MicroRNA-29a (miR-29a), a key regulator of cellular behaviors, is present in anti-fibrosis and modulator tumorigenesis. However, the increased transparency of the correlation between miR-29a and the progression of human HCC is still further investigated. In this study, we predicted HIF-1α and ANGPT2 as regulators of HCC by the OncoMir cancer database and showed a strong positive correlation with HIF-1α and ANGPT2 gene expression in HCC patients. Mice fed the western diet (WD) while administered CCl4 for 25 weeks induced chronic liver damage and higher HCC incidence than without fed WD mice. HCC section staining revealed signaling upregulation in ki67, severe fibrosis, and steatosis in WD and CCl4 mice and detected Col3a1 gene expressions. HCC tissues significantly attenuated miR-29a but increased in HIF-1α, ANGPT2, Lox, Loxl2, and VEGFA expression. Luciferase activity analysis confirms that miR-29a specific binding 3′UTR of HIF-1α and ANGPT2 to repress expression. In summary, miR-29a control HIF-1α and ANGPT2 signaling in HCC formation. This study insight into a novel molecular pathway by which miR-29a targeting HIF-1α and ANGPT2 counteracts the incidence of HCC development.  相似文献   

14.
15.
Recently, the role of kidney pericytes in kidney fibrosis has been investigated. This study aims to evaluate the effect of paricalcitol on hypoxia-induced and TGF-β1-induced injury in kidney pericytes. The primary cultured pericytes were pretreated with paricalcitol (20 ng/mL) for 90 min before inducing injury, and then they were exposed to TGF-β1 (5 ng/mL) or hypoxia (1% O2 and 5% CO2). TGF-β1 increased α-SMA and other fibrosis markers but reduced PDGFRβ expression in pericytes, whereas paricalcitol reversed the changes. Paricalcitol inhibited the TGF-β1-induced cell migration of pericytes. Hypoxia increased TGF-β1, α-SMA and other fibrosis markers but reduced PDGFRβ expression in pericyte, whereas paricalcitol reversed them. Hypoxia activated the HIF-1α and downstream molecules including prolyl hydroxylase 3 and glucose transporter-1, whereas paricalcitol attenuated the activation of the HIF-1α-dependent molecules and TGF-β1/Smad signaling pathways in hypoxic pericytes. The gene silencing of HIF-1α vanished the hypoxia-induced TGF-β1, α-SMA upregulation, and PDGFRβ downregulation. The effect of paricalcitol on the HIF-1α-dependent changes of fibrosis markers was not significant after the gene silencing of HIF-1α. In addition, hypoxia aggravated the oxidative stress in pericytes, whereas paricalcitol reversed the oxidative stress by increasing the antioxidant enzymes in an HIF-1α-independent manner. In conclusion, paricalcitol improved the phenotype changes of pericyte to myofibroblast in TGF-β1-stimulated pericytes. In addition, paricalcitol improved the expression of fibrosis markers in hypoxia-exposed pericytes both in an HIF-1α-dependent and independent manner.  相似文献   

16.
Orthodontic tooth movement (OTM) creates compressive and tensile strain in the periodontal ligament, causing circulation disorders. Hypoxia-inducible factor 1α (HIF-1α) has been shown to be primarily stabilised by compression, but not hypoxia in periodontal ligament fibroblasts (PDLF) during mechanical strain, which are key regulators of OTM. This study aimed to elucidate the role of heparan sulfate integrin interaction and downstream kinase phosphorylation for HIF-1α stabilisation under compressive and tensile strain and to which extent downstream synthesis of VEGF and prostaglandins is HIF-1α-dependent in a model of simulated OTM in PDLF. PDLF were subjected to compressive or tensile strain for 48 h. In various setups HIF-1α was experimentally stabilised (DMOG) or destabilised (YC-1) and mechanotransduction was inhibited by surfen and genistein. We found that HIF-1α was not stabilised by tensile, but rather by compressive strain. HIF-1α stabilisation had an inductive effect on prostaglandin and VEGF synthesis. As expected, HIF-1α destabilisation reduced VEGF expression, whereas prostaglandin synthesis was increased. Inhibition of integrin mechanotransduction via surfen or genistein prevented stabilisation of HIF-1α. A decrease in VEGF expression was observed, but not in prostaglandin synthesis. Stabilisation of HIF-1α via integrin mechanotransduction and downstream phosphorylation of kinases seems to be essential for the induction of VEGF, but not prostaglandin synthesis by PDLF during compressive (but not tensile) orthodontic strain.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号