首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The present paper aims at a systematic review of the current knowledge on phosphatidylethanol (PEth) in blood as a direct marker of chronic alcohol use and abuse. In March 2012, the search through “MeSH” and “free-text” protocols in the databases Medline/PubMed, SCOPUS, Web of Science, and Ovid/Embase, combining the terms phosphatidylethanol and alcohol, provided 444 records, 58 of which fulfilled the inclusion criteria and were used to summarize the current evidence on the formation, distribution and degradation of PEth in human blood: (1), the presence and distribution of different PEth molecular species (2), the most diffused analytical methods devoted to PEth identification and quantization (3), the clinical efficiency of total PEth quantification as a marker of chronic excessive drinking (4), and the potential utility of this marker for identifying binge drinking behaviors (5). Twelve papers were included in the meta-analysis and the mean (M) and 95% confidence interval (CI) of total PEth concentrations in social drinkers (DAI ≤ 60 g/die; M = 0.288 μM; CI 0.208–0.367 μM) and heavy drinkers (DAI > 60 g/die; M = 3.897 μM; CI 2.404–5.391 μM) were calculated. The present analysis demonstrates a good clinical efficiency of PEth for detecting chronic heavy drinking.  相似文献   

2.
Ischemic stroke is a damaging cerebral vascular disease associated with high disability and mortality rates worldwide. In spite of the continuous development of new diagnostic and prognostic methods, early detection and outcome prediction are often very difficult. The neurovascular unit (NVU) is a complex multicellular entity linking the interactions between neurons, glial cells, and brain vessels. Novel research has revealed that exosome-mediated transfer of microRNAs plays an important role in cell-to-cell communication and, thus, is integral in the multicellular crosstalk within the NVU. After a stroke, NVU homeostasis is altered, which induces the release of several potential biomarkers into the blood vessels. The addition of biological data representing all constituents of the NVU to clinical and neuroradiological findings can significantly advance stroke evaluation and prognosis. In this review, we present the current literature regarding the possible beneficial roles of exosomes derived from the components of the NVU and multipotent mesenchymal stem cells in preclinical studies of ischemic stroke. We also discuss the most relevant clinical trials on the diagnostic and prognostic roles of exosomes in stroke patients.  相似文献   

3.
Tumor-associated macrophages (TAMs) and abnormalities in cancer cells affect cancer progression and response to therapy. TAMs are a major component of the tumor microenvironment (TME) in breast cancer, with their invasion affecting clinical outcomes. Programmed death-ligand 1 (PD-L1), a target of immune checkpoint inhibitors, acts as a suppressive signal for the surrounding immune system; however, its expression and effect on TAMs and the clinical outcome in breast cancer are unknown. In this study, we used high-throughput multiple immunohistochemistry to spatially and quantitatively analyze TAMs. We subjected 81 breast cancer specimens to immunostaining for CD68, CD163, PD-1, PD-L1, CD20, and pan-CK. In both stromal and intratumoral areas, the triple-negative subtype had significantly more CD68/CD163, CD68/PD-L1, and CD163/PD-L1 double-positive cells than the estrogen receptor (ER)/progesterone receptor (PR) subtype. Interestingly, a higher number of CD68+/PD-L1+/CK-/CD163- TAMs in the intratumoral area was correlated with a favorable recurrence rate (p = 0.048). These findings indicated that the specific subpopulation and localization of TAMs in the TME affect clinical outcomes in breast cancer.  相似文献   

4.
Pyridazino-1,3a,6a-triazapentalenes (PyTAP) are compact fused 6/5/5 tricyclic scaffolds which exhibit promising fluorescent properties. Chemically stable, they can be post-functionalized using standard Pd-catalyzed cross-coupling chemistry. Several original PyTAP bearing additional unsaturated substituents in positions 2 and 8 were synthetized and their spectroscopic properties analyzed. They have been successfully tested as fluorescent probes for cellular imaging.  相似文献   

5.
Male fertility disorders often have their origin in disturbed spermatogenesis, which can be induced by genetic factors. In this study, we used interspecific recombinant congenic mouse strains (IRCS) to identify genes responsible for male infertility. Using ultrasonography, in vivo and in vitro fertilization (IVF) and electron microscopy, the phenotyping of several IRCS carrying mouse chromosome 1 segments of Mus spretus origin revealed a decrease in the ability of sperm to fertilize. This teratozoospermia included the abnormal anchoring of the acrosome to the nucleus and a persistence of residual bodies at the level of epididymal sperm midpiece. We identified a quantitative trait locus (QTL) responsible for these phenotypes and we have proposed a short list of candidate genes specifically expressed in spermatids. The future functional validation of candidate genes should allow the identification of new genes and mechanisms involved in male infertility.  相似文献   

6.
7.
Complex mixtures consist of homocyclic and heterocyclic polycyclic aromatic compounds (PACs) represented by benzo[ a ]pyrene (B a P) and 7 H -dibenzo[ c,g ]carbazole (DBC), respectively. To exert their biological effects, PACs are metabolized into reactive intermediates, which can form DNA adducts. In this preliminary report, male A/J mice were given a single intraperitoneal injection. Groups of three animals were treated with DBC (2 or 10 mg/kg) or B a P (10 or 100 mg/kg). Mixtures of DBC:B a P were given at doses of 2:10, 2:100, 10:10, or 10:100 mg/kg. DNA adduct levels in lungs collected three days posttreatment were determined by the 32 P-postlabeling method. The results indicate that, in the lungs, exposure to mixtures containing more B a P than DBC resulted in the absence of adduct 3 (DBC) and significantly higher total adduct levels. This suggests that B a P is being preferentially metabolized, resulting in less DBC adduction.  相似文献   

8.
In the present study, a magnetic niosomal nanocarrier for co-delivery of curcumin and letrozole into breast cancer cells has been designed. The magnetic NiCoFe2O4 core was coated by a thin layer of silica, followed by a niosomal structure, allowing us to load letrozole and curcumin into the silica layer and niosomal layer, respectively, and investigate their synergic effects on breast cancer cells. Furthermore, the nanocarriers demonstrated a pH-dependent release due to the niosomal structure at their outer layer, which is a promising behavior for cancer treatment. Additionally, cellular assays revealed that the nanocarriers had low cellular uptake in the case of non-tumorigenic cells (i.e., MCF-10A) and related high viability but high cellular uptake in cancer cell lines (i.e., MDA-MB-231 and SK-BR-3) and related low viability, which is evidenced in their high cytotoxicity against different breast cancer cell lines. The cytotoxicity of the letrozole/curcumin co-loaded nanocarrier is higher than that of the aqueous solutions of both drugs, indicating their enhanced cellular uptake in their encapsulated states. In particular, NiCoFe2O4@L-Silica-L@C-Niosome showed the highest cytotoxicity effects on MDA-MB-231 and SK-BR-3 breast cancer cells. The observed cytotoxicity was due to regulation of the expression levels of the studied genes in breast cancer cells, where downregulation was observed for the Bcl-2, MMP 2, MMP 9, cyclin D, and cyclin E genes while upregulation of the expression of the Bax, caspase-3, and caspase-9 genes was observed. The flow cytometry results also revealed that NiCoFe2O4@L-Silica-L@C-Niosome enhanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells compared to the control samples. The findings of our research show the potential of designing magnetic niosomal formulations for simultaneous targeted delivery of both hydrophobic and hydrophilic drugs into cancer cells in order to enhance their synergic chemotherapeutic effects. These results could open new avenues into the future of nanomedicine and the development of theranostic agents.  相似文献   

9.
Many organophosphorus compounds (OPs), especially various α-aminophosphonates, exhibit anti-cancer activities. They act, among others, as inhibitors of the proteases implicated in cancerogenesis. Thesetypes of inhibitors weredescribed, e.g., for neutral endopeptidase (NEP) expressed in different cancer cells, including osteosarcoma (OS). The aim of the present study isto evaluate new borane-protected derivatives of phosphonous acid (compounds 1–7) in terms of their drug-likeness properties, anti-osteosarcoma activities in vitro (against HOS and Saos-2 cells), and use as potential NEP inhibitors. The results revealed that all tested compounds exhibited the physicochemical and ADME properties typical for small-molecule drugs. However, compound 4 did not show capability of blood–brain barrier penetration (Lipiński and Veber rules;SwissAdme tool). Moreover, the α-aminophosphonite-boranes (compounds 4–7) exhibited stronger anti-proliferative activity against OS cells than the other phosphonous acid-borane derivatives (compounds 1–3),especially regarding HOS cells (MTT assay). The most promising compounds 4 and 6 induced apoptosis through the activation of caspase 3 and/or cell cycle arrest at the G2 phase (flow cytometry). Compound 4 inhibited the migration and invasiveness of highly aggressive HOS cells (wound/transwell and BME-coated transwell assays, respectively). Additionally, compound 4 and, to a lesser extent, compound 6 inhibited NEP activity (fluorometric assay). This activity of compound 4 was involved in its anti-proliferative potential (BrdU assay). The present study shows that compound 4 can be considered a potential anti-osteosarcoma agent and a scaffold for the development of new NEP inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号