首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Uptake and processing of antigens by antigen presenting cells (APCs) is a key step in the initiation of the adaptive immune response. Studying these processes is complex as the identification of low abundant exogenous antigens from complex cell extracts is difficult. Mass-spectrometry based proteomics – the ideal analysis tool in this case – requires methods to retrieve such molecules with high efficiency and low background. Here, we present a method for the selective and sensitive enrichment of antigenic peptides from APCs using click-antigens; antigenic proteins expressed with azidohomoalanine (Aha) in place of methionine residues. We here describe the capture of such antigens using a new covalent method namely, alkynyl functionalized PEG-based Rink amide resin, that enables capture of click-antigens via copper-catalyzed azide-alkyne [2 + 3] cycloaddition (CuAAC). The covalent nature of the thus formed linkage allows stringent washing to remove a-specific background material, prior to retrieval peptides by acid-mediated release. We successfully identified peptides from a tryptic digest of the full APC proteome containing femtomole amounts of Aha-labelled antigen, making this a promising approach for clean and selective enrichment of rare bioorthogonally modified peptides from complex mixtures.  相似文献   

2.
Graft-versus-host disease (GVHD) and infection are major complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the leading causes of morbidity and mortality in HSCT patients. Recent work has demonstrated that the two complications are interdependent. GVHD occurs when allo-reactive donor T lymphocytes are activated by major histocompatibility antigens or minor histocompatibility antigens on host antigen-presenting cells (APCs), with the eventual attack of recipient tissues or organs. Activation of APCs is important for the priming of GVHD and is mediated by innate immune signaling pathways. Current evidence indicates that intestinal microbes and innate pattern-recognition receptors (PRRs) on host APCs, including both Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), are involved in the pathogenesis of GVHD. Patients undergoing chemotherapy and/or total body irradiation before allo-HSCT are susceptible to aggravated gastrointestinal epithelial cell damage and the subsequent translocation of bacterial components, followed by the release of endogenous dangerous molecules, termed pathogen-associated molecular patterns (PAMPs), which then activate the PRRs on host APCs to trigger local or systemic inflammatory responses that modulate T cell allo-reactivity against host tissues, which is equivalent to GVHD. In other words, infection can, to some extent, accelerate the progression of GVHD. Therefore, the intestinal flora’s PAMPs can interact with TLRs to activate and mature APCs, subsequently activate donor T cells with the release of pro-inflammatory cytokines, and eventually, induce GVHD. In the present article, we summarize the current perspectives on the understanding of different TLR signaling pathways and their involvement in the occurrence of GVHD.  相似文献   

3.
We studied CD34+ stromal cells/telocytes (CD34+SCs/TCs) in pathologic skin, after briefly examining them in normal conditions. We confirm previous studies by other authors in the normal dermis regarding CD34+SC/TC characteristics and distribution around vessels, nerves and cutaneous annexes, highlighting their practical absence in the papillary dermis and presence in the bulge region of perifollicular groups of very small CD34+ stromal cells. In non-tumoral skin pathology, we studied examples of the principal histologic patterns in which CD34+SCs/TCs have (1) a fundamental pathophysiological role, including (a) fibrosing/sclerosing diseases, such as systemic sclerosis, with loss of CD34+SCs/TCs and presence of stromal cells co-expressing CD34 and αSMA, and (b) metabolic degenerative processes, including basophilic degeneration of collagen, with stromal cells/telocytes in close association with degenerative fibrils, and cutaneous myxoid cysts with spindle-shaped, stellate and bulky vacuolated CD34+ stromal cells, and (2) a secondary reactive role, encompassing dermatitis—e.g., interface (erythema multiforme), acantholytic (pemphigus, Hailey–Hailey disease), lichenoid (lichen planus), subepidermal vesicular (bullous pemphigoid), psoriasiform (psoriasis), granulomatous (granuloma annulare)—vasculitis (leukocytoclastic and lymphocytic vasculitis), folliculitis, perifolliculitis and inflammation of the sweat and sebaceous glands (perifolliculitis and rosacea) and infectious dermatitis (verruca vulgaris). In skin tumor and tumor-like conditions, we studied examples of those in which CD34+ stromal cells are (1) the neoplastic component (dermatofibrosarcoma protuberans, sclerotic fibroma and solitary fibrous tumor), (2) a neoplastic component with varying presentation (fibroepithelial polyp and superficial myxofibrosarcoma) and (3) a reactive component in other tumor/tumor-like cell lines, such as those deriving from vessel periendothelial cells (myopericytoma), epithelial cells (trichoepithelioma, nevus sebaceous of Jadassohn and seborrheic keratosis), Merkel cells (Merkel cell carcinoma), melanocytes (dermal melanocytic nevi) and Schwann cells (neurofibroma and granular cell tumor).  相似文献   

4.
The unique therapeutic value of dendritic cells (DCs) for the treatment of allergy, autoimmunity and transplant rejection is predicated upon our ability to selectively deliver antigens, drugs or nucleic acids to DCs in vivo. Here we describe a method for delivering whole protein antigens to DCs based on carbohydrate-mediated targeting of DC-expressed lectins. A series of synthetic carbohydrates was chemically-coupled to a model antigen, ovalbumin (OVA), and each conjugate was evaluated for its ability to increase the efficiency of antigen presentation by murine DCs to OVA-specific T cells (CD4(+) and CD8(+)). In vitro data are presented that demonstrate that carbohydrate modification of OVA leads to a 50-fold enhancement of presentation of antigenic peptide to CD4(+) T cells. A tenfold enhancement is observed for CD8(+) T cells; this indicates that the targeted lectin(s) can mediate cross-presentation of antigens on MHC class I. Our data indicate that the observed enhancements in antigen presentation are unique to OVA that is conjugated to complex oligosaccharides, such as a high-mannose nonasaccharide, but not to monosaccharides. Taken together, our data suggest that a DC targeting strategy that is based upon carbohydrate-lectin interactions is a promising approach for enhancing antigen presentation via class I and class II molecules.  相似文献   

5.
CD4+ T cells orchestrate adaptive immune responses through their capacity to recruit and provide help to multiple immune effectors, in addition to exerting direct effector functions. CD4+ T cells are increasingly recognized as playing an essential role in the control of chronic viral infections. In this review, we present recent advances in understanding the nature of CD4+ T cell help provided to antiviral effectors. Drawing from our studies of natural human immunodeficiency virus (HIV) control, we then focus on the role of high-affinity T cell receptor (TCR) clonotypes in mediating antiviral CD4+ T cell responses. Last, we discuss the role of TCR affinity in determining CD4+ T cell differentiation, reviewing the at times divergent studies associating TCR signal strength to the choice of a T helper 1 (Th1) or a T follicular helper (Tfh) cell fate.  相似文献   

6.
CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells. In addition to identifying several known T-cell activation-related processes altered expression of several stimulatory/inhibitory immune checkpoint markers between resting and activated CD4+ T cells were observed. Network analysis further revealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1, FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell data suggested interspecies proteomic differences. The current dataset will serve as a valuable resource to the scientific community to compare and analyze the CD4+ proteome.  相似文献   

7.
Melanoma is an aggressive skin cancer that has become increasingly prevalent in western populations. Current treatments such as surgery, chemotherapy, and high-dose radiation have had limited success, often failing to treat late stage, metastatic melanoma. Alternative strategies such as immunotherapies have been successful in treating a small percentage of patients with metastatic disease, although these treatments to date have not been proven to enhance overall survival. Several melanoma antigens (Ags) proposed as targets for immunotherapeutics include tyrosinase, NY-ESO-1, gp-100, and Mart-1, all of which contain both human leukocyte antigen (HLA) class I and class II-restricted epitopes necessary for immune recognition. We have previously shown that an enzyme, gamma-IFN-inducible lysosomal thiol-reductase (GILT), is abundantly expressed in professional Ag presenting cells (APCs), but absent or expressed at greatly reduced levels in many human melanomas. In the current study, we report that increased GILT expression generates a greater pool of antigenic peptides in melanoma cells for enhanced CD4+ T cell recognition. Our results suggest that the induction of GILT in human melanoma cells could aid in the development of a novel whole-cell vaccine for the enhancement of immune recognition of metastatic melanoma.  相似文献   

8.
Several origins have been proposed for cancer-associated fibroblasts (CAFs), including resident CD34+ stromal cells/telocytes (CD34+SCs/TCs). The characteristics and arrangement of mammary CD34+SCs/TCs are well known and invasive lobular carcinoma of the breast (ILC) is one of the few malignant epithelial tumours with stromal cells that can express CD34 or αSMA, which could facilitate tracking these cells. Our objective is to assess whether tissue-resident CD34+SCs/TCs participate in the origin of CAFs in ILCs. For this purpose, using conventional and immunohistochemical procedures, we studied stromal cells in ILCs (n:42) and in normal breasts (n:6, also using electron microscopy). The results showed (a) the presence of anti-CD34+ or anti-αSMA+ stromal cells in varying proportion (from very rare in one of the markers to balanced) around nests/strands of neoplastic cells, (b) a similar arrangement and location of stromal cells in ILC to CD34+SCs/TCs in the normal breast, (c) both types of stromal cells coinciding around the same nest of neoplastic cells and (d) the coexpression of CD34 and αSMA in stromal cells in ILC. In conclusion, our findings support the hypothesis that resident CD34+SCs/TCs participate as an important source of CAFs in ILC. Further studies are required in this regard in other tumours.  相似文献   

9.
目的研究CpG寡聚脱氧核苷酸(CpG-oligodeoxynucleotides,CpG-ODN)与A(lOH)3或Montanide ISA720等组成的复合佐剂在小鼠体内促进蛋白抗原通过交叉提呈和交叉致敏诱生CD8+CTL反应的能力。方法以鸡卵清蛋白(Ovalbumin,OVA)为抗原,分别以CpG X1、A(l OH)(3即Alum)、Montanide ISA720、CpG X1+Alum和CpG X1+Montanide ISA720为疫苗佐剂,分别于0和4周经肌肉注射免疫C57BL/6小鼠,体积均为100μl,分别含20μg OVA、20μg CpG X1、74μl Montanide ISA720和/或100μg Alum。通过胞内细胞因子染色和体内CTL杀伤试验评价不同佐剂对细胞免疫应答的影响,通过表达OVA的黑色素瘤和李斯特菌攻击模型评价不同佐剂在免疫预防和免疫治疗中的作用。结果与OVA组相比,A(lOH)3本身不能有效诱生小鼠的细胞免疫应答;CpG X1或Montanide ISA720单独使用能够在一定程度上增强抗原特异性CD8+T细胞的IFNγ分泌和CTL活性,但不增强抗原特异性CD4+T细胞反应。两种复合佐剂具有比单佐剂更强的细胞免疫佐剂效应,其中CpG X1+MontanideISA720只能增强抗原特异性CD4+和CD8+T细胞的IFNγ分泌,而CpG X1+Alum不仅能够增强抗原特异性CD4+和CD8+T细胞的IFNγ分泌,还能够增强CD8+CTL的杀伤活性。在黑色素瘤和李斯特菌攻击模型中,CpG X1+Alum佐剂显示出良好的预防和治疗效果。结论 CpG X1与A(lOH)3组成的复合佐剂能够有效促进蛋白抗原通过交叉提呈和交叉致敏诱生功能性CD8+CTL反应。  相似文献   

10.
CD1 proteins present mammalian and microbial lipid and glycolipid antigens to different subsets of T cells. Few such antigens have been identified and the binding of these to CD1 molecules has mainly been studied by using responding T cells in cellular assays or recombinant solid-phase CD1 proteins. In the present study we use four different glycolipids, some of which contain tumor-associated carbohydrate antigens, to develop a procedure to easily detect binding of glycolipids to CD1 proteins on viable cells. Two of these glycolipids are novel glycoconjugates containing alpha-D-N-acetylgalactosamine (alpha-GalNAc) that were prepared by a combined solution and solid-phase approach. The key step, a Fischer glycosylation of 9-fluorenylmethoxycarbonylaminoethanol with GalNAc, furnished the alpha-glycoside 4 in 34% yield. Cells were incubated with glycolipids and stained with monoclonal antibodies specific for the carbohydrate part. The level of glycolipid bound to cells was then determined by flow cytometry with a secondary antibody labeled with fluorescein isothiocyanate. All four glycolipids were found to bind to CD1d but with different selectivity. The loading was dose dependent and could be inhibited by an established CD1d ligand, alpha-galactosylceramide. Through use of this procedure, glycolipids were selectively loaded onto CD1d expressed on professional antigen-presenting cells for future use as cellular vaccines. Moreover, the glycolipids described in this study represent novel CD1d-binding ligands that will be useful derivatives in the study of CD1d-dependent immune responses, for example, against tumors.  相似文献   

11.
Bispecific antibodies (BsAbs) or fusion proteins (BsAbFPs) present a promising strategy for cancer immunotherapy. Numerous BsAbs targeting coinhibitory and costimulatory pathways have been developed for retargeting T cells and antigen presenting cells (APCs). It is challenging to assess the potency of BsAb that engages two different signaling pathways simultaneously in a single assay format, especially when the two antigen targets are expressed on different cells. To explore the potency of anti-PD-L1/CD40L BsAbFP, a fusion protein that binds to human CD40 and PD-L1, we engineered CHO cells as surrogate APCs that express T cell receptor activator and PD-L1, Jurkat cells with PD-1 and NFAT-luciferase reporter as effector T cells, and Raji cell with NFkB-luciferase that endogenously expresses CD40 as accessory B cells. A novel reporter gene bioassay was developed using these cell lines that allows anti-PD-L1/CD40L BsAbFP to engages both PD-1/PD-L1 and CD40/CD40L signaling pathways in one assay. As both reporters use firefly luciferase, the effects of activating both signaling pathways is observed as an increase in luminescence, either as a higher upper asymptote, a lower EC50, or both. This dual target reporter gene bioassay system reflects potential mechanism of action and demonstrated the ability of anti-PD-L1/CD40L BsAbFP to synergistically induce biological response compared to the combination of anti-PD-L1 monovalent monoclonal antibody and agonist CD40L fusion protein, or either treatment alone. The results also showed a strong correlation between the drug dose and biological response within the tested potency range with good linearity, accuracy, precision, specificity and stability indicating properties, suggesting that this “three-cell-in-one” dual target reporter gene bioassay is suitable for assessing potency, structure-function and critical quality attributes of anti-PD-L1/CD40L BsAbFP. This approach could be used for developing dual target bioassays for other BsAbs and antibodies used for combination therapy.  相似文献   

12.
13.
We studied SARS-CoV-2-specific T cell responses in 22 subacute MIS-C children enrolled in 2021 and 2022 using peptide pools derived from SARS-CoV-2 spike or nonspike proteins. CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in 5 subjects, CD4+ T helper (Th) responses alone were detected in 12 subjects, and CD8+ cytotoxic T cell (CTL) responses alone were documented in 1 subject. Notably, a sizeable subpopulation of CD4− CD8− double-negative (DN) T cells out of total CD3+ T cells was observed in MIS-C (median: 14.5%; IQR 8.65–25.3) and recognized SARS-CoV-2 peptides. T cells bearing the Vβ21.3 T cell receptor (TcRs), previously reported as pathogenic in the context of MIS-C, were detected in high frequencies, namely, in 2.8% and 3.9% of the CD4+ and CD8+ T cells, respectively. However, Vβ21.3 CD8+ T cells that responded to SARS-CoV-2 peptides were detected in only a single subject, suggesting recognition of nonviral antigens in the majority of subjects. Subjects studied 6–14 months after MIS-C showed T cell epitope spreading, meaning the activation of T cells that recognize more SARS-CoV-2 peptides following the initial expansion of T cells that see immunodominant epitopes. For example, subjects that did not recognize nonspike proteins in the subacute phase of MIS-C showed good Th response to nonspike peptides, and/or CD8+ T cell responses not appreciable before arose over time and could be detected in the 6–14 months’ follow-up. The magnitude of the Th and CTL responses also increased over time. In summary, patients with MIS-C associated with acute lymphopenia, a classical feature of MIS-C, showed a physiological response to the virus with a prominent role for virus-specific DN T cells.  相似文献   

14.
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.  相似文献   

15.
Recent advances in cancer immunotherapy have great promise for the treatment of solid tumors. One of the key limiting factors that hamper the decoding of physiological responses to these therapies is the inability to distinguish between specific and nonspecific responses. The identification of tumor-specific lymphocytes is also the most challenging step in cancer cell therapies such as adoptive cell transfer and T cell receptor (TCR) cloning. Here, we have elaborated a protocol for the identification of tumor-specific T lymphocytes and the deciphering of their repertoires. B16 melanoma engraftment following anti-PD1 checkpoint therapy provides better antitumor immunity compared to repetitive immunization with heat-shocked tumor cells. We have also revealed that the most error-prone part of dendritic cell (DC) generation, i.e., their maturation step, can be omitted if DCs are cultured at a sufficiently high density. Using this optimized protocol, we have achieved a robust IFNγ response to B16F0 antigens, but only within CD4+ T helper cells. A comparison of the repertoires of IFNγ-positive and -negative cells shows a prominent enrichment of certain clones with putative tumor specificity among the IFNγ+ fraction. In summary, our optimized protocol and the data provided here will aid in the acquisition of broad statistical data and the creation of a meaningful database of B16-specific TCRs.  相似文献   

16.
While the beneficial impact of modifying and/or targeting T lymphocytes is becoming increasingly accepted in the treatment of different diseases, the road towards cell-based immunotherapy is still long and winding. Major challenges that remain include, amongst others, the guidance and exquisite regulation of immune processes ex vivo. In part, this is due to the difficulties of simulating ex vivo the intimate cellular interactions that occur between T cells and antigen-presenting cells (APCs). The fate of T cells is not solely regulated by the presence of certain molecules on the surface of APCs but also by their density and spatial distribution on the micro- and nanometric scale. Moreover, mechanical properties of APCs and force-dependent conformational changes during the formation of an immunological synapse (IS; a highly organized supramolecular complex at the T cell APC interface), play a crucial role in T cell fate regulation. Various different technical means have been developed to create APC substitutes that are able to simulate ex vivo signals originating from naturally occurring APCs. Here, we review the performance of APC surrogates and discuss their contribution to understanding mechanisms underlying the ability of T cells to perform the “intelligent” mission of acquiring, processing and responding to environmental information.  相似文献   

17.
Lymphatic endothelial cells (LECs) line the lymphatic vasculature and play a central role in the immune response. LECs have abilities to regulate immune transport, to promote immune cell survival, and to cross present antigens to dendritic cells. Single-cell RNA sequencing (scRNA) technology has accelerated new discoveries in the field of lymphatic vascular biology. This review will summarize these new findings in regard to embryonic development, LEC heterogeneity with associated functional diversity, and interactions with other cells. Depending on the organ, location in the lymphatic vascular tree, and micro-environmental conditions, LECs feature unique properties and tasks. Furthermore, adjacent stromal cells need the support of LECs for fulfilling their tasks in the immune response, such as immune cell transport and antigen presentation. Although aberrant lymphatic vasculature has been observed in a number of chronic inflammatory diseases, the knowledge on LEC heterogeneity and functional diversity in these diseases is limited. Combining scRNA sequencing data with imaging and more in-depth functional experiments will advance our knowledge of LECs in health and disease. Building the case, the LEC could be put forward as a new therapeutic target in chronic inflammatory diseases, counterweighting the current immune-cell focused therapies.  相似文献   

18.
Hepatocellular carcinoma (HCC) develops almost entirely in the presence of chronic inflammation. Chronic hepatitis B virus (HBV) infection with recurrent immune-mediated liver damage ultimately leads to cirrhosis and HCC. It is widely accepted that HBV infection induces the dysfunction of the innate and adaptive immune responses that engage various immune cells. Natural killer (NK) cells are associated with early antiviral and antitumor properties. On the other hand, inflammatory cells release various cytokines and chemokines that may promote HCC tumorigenesis. Moreover, immunosuppressive cells such as regulatory T cells (Treg) and myeloid-derived suppressive cells play a critical role in hepatocarcinogenesis. HBV-specific CD8+ T cells have been identified as pivotal players in antiviral responses, whilst extremely activated CD8+ T cells induce enormous inflammatory responses, and chronic inflammation can facilitate hepatocarcinogenesis. Controlling and maintaining the balance in the immune system is an important aspect in the management of HBV-related HCC. We conducted a review of the current knowledge on the immunopathogenesis of HBV-induced inflammation and the role of such immune activation in the tumorigenesis of HCC based on the recent studies on innate and adaptive immune cell dysfunction in HBV-related HCC.  相似文献   

19.
The immunomodulatory glycolipid α-galactosylceramide (α-GalCer) binds to CD1d and exhibits potent activity as a ligand for invariant CD1d-restricted natural killer-like T cells (iNKT cells). Structural analogues of α-GalCer have been synthesised to determine which components are required for CD1d presentation and iNKT cell activation, however, to date the importance of the phytosphingosine 4-hydroxyl for iNKT cell activation has been disputed. To clarify this, we synthesised two 4-deoxy α-GalCer analogues (sphinganine and sphingosine) and investigated their ability to activate murine and human iNKT cells. Analysis revealed that the analogues possessed comparable activity to α-GalCer in stimulating murine iNKT cells, but were severely compromised in their ability to stimulate human iNKT cells. Here we determined that species-specific glycolipid activity was due to a lack of recognition of the analogues by the T-cell receptors on human iNKT cells rather than insufficient presentation of the analogues on human CD1d molecules. From these results we suggest that glycolipids developed for potent iNKT cell activity in humans should contain a phytosphingosine base.  相似文献   

20.
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) and inducers of T cell-mediated immunity. Although DCs play a central role in promoting adaptive immune responses against growing tumors, they also establish and maintain peripheral tolerance. DC activity depends on the method of induction and/or the presence of immunosuppressive agents. Tolerogenic dendritic cells (tDCs) induce immune tolerance by activating CD4+CD25+Foxp3+ regulatory T (Treg) cells and/or by producing cytokines that inhibit T cell activation. These findings suggest that tDCs may be an effective treatment for autoimmune diseases, inflammatory diseases, and infertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号