首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Prenylcysteine Oxidase 1 (PCYOX1) is an enzyme involved in the degradation of prenylated proteins. It is expressed in different tissues including vascular and blood cells. We recently showed that the secretome from Pcyox1-silenced cells reduced platelet adhesion both to fibrinogen and endothelial cells, suggesting a potential contribution of PCYOX1 into thrombus formation. Here, we show that in vivo thrombus formation after FeCl3 injury of the carotid artery was delayed in Pcyox1−/− mice, which were also protected from collagen/epinephrine induced thromboembolism. The Pcyox1−/− mice displayed normal blood cells count, vascular procoagulant activity and plasma fibrinogen levels. Deletion of Pcyox1 reduced the platelet/leukocyte aggregates in whole blood, as well as the platelet aggregation, the alpha granules release, and the αIIbβ3 integrin activation in platelet-rich plasma, in response to adenosine diphosphate (ADP) or thrombin receptor agonist peptide (TRAP). Washed platelets from the Pcyox1−/− and WT animals showed similar phosphorylation pathway activation, adhesion ability and aggregation. The presence of Pcyox1−/− plasma impaired agonist-induced WT platelet aggregation. Our findings show that the absence of PCYOX1 results in platelet hypo-reactivity and impaired arterial thrombosis, and indicates that PCYOX1 could be a novel target for antithrombotic drugs.  相似文献   

2.
Background: Clinical management of ischemic events and prevention of vascular disease is based on antiplatelet drugs. Given the relevance of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) as a candidate target in thrombosis, the main goal of the present study was to identify novel antiplatelet agents within the existing inhibitors blocking PI3K isoforms. Methods: We performed a biological evaluation of the pharmacological activity of PI3K inhibitors in platelets. The effect of the inhibitors was evaluated in intracellular calcium release and platelet functional assays, the latter including aggregation, adhesion, and viability assays. The in vivo drug antithrombotic potential was assessed in mice undergoing chemically induced arterial occlusion, and the associated hemorrhagic risk evaluated by measuring the tail bleeding time. Results: We show that PI3K Class IA inhibitors potently block calcium mobilization in human platelets. The PI3K p110δ inhibitor Idelalisib inhibits platelet aggregation mediated by ITAM receptors GPVI and CLEC-2, preferentially by the former. Moreover, Idelalisib also inhibits platelet adhesion and aggregation under shear and adhesion to collagen. Interestingly, an antithrombotic effect was observed in mice treated with Idelalisib, with mild bleeding effects at high doses of the drug. Conclusion: Idelalisib may have antiplatelet effects with minor bleeding effects, which provides a rationale to evaluate its antithrombotic efficacy in humans.  相似文献   

3.
Cardiovascular diseases are associated with platelet hyperactivity, and downregulating platelet activation is one of the promising antithrombotic strategies. This study newly extracted two polysaccharides (purified exopolysaccharides, EPSp and purified intercellular exopolysaccharides, IPSp) from Cordyceps sinensis Cs-4 mycelial fermentation powder, and investigated the effects of the two polysaccharides and their gut bacterial metabolites on platelet functions and thrombus formation. EPSp and IPSp are majorly composed of galactose, mannose, glucose, and arabinose. Both EPSp and IPSp mainly contain 4-Galp and 4-Glcp glycosidic linkages. EPSp and IPSp significantly inhibited human platelet activation and aggregation with a dose-dependent manner, and attenuated thrombus formation in mice without increasing bleeding risk. Furthermore, the EPSp and IPSp after fecal fermentation showed enhanced platelet inhibitory effects. The results have demonstrated the potential value of Cs-4 polysaccharides as novel protective ingredients for cardiovascular diseases.  相似文献   

4.
Platelets and lipoproteins play a crucial role in atherogenesis, in part by their ability to modulate inflammation and oxidative stress. While oxidized low density lipoproteins (OxLDL) play a central role in the development of this disease, high density lipoproteins (HDL) represent an atheroprotective factor of utmost importance. As platelet function is remarkably sensitive to the influence of plasma lipoproteins, it was the aim of this study to clarify if HDL are able to counteract the stimulating effects of OxLDL with special emphasis on aspects of platelet function that are relevant to inflammation. Therefore, HDL were tested for their ability to interfere with pro-thrombotic and pro-inflammatory aspects of platelet function. We are able to show that HDL significantly impaired OxLDL-induced platelet aggregation and adhesion. In gel-filtered platelets, HDL decreased both the formation of reactive oxygen species and CD40L expression. Furthermore, HDL strongly interfered with OxLDL-induced formation of platelet-neutrophil aggregates in whole blood, suggesting that platelets represent a relevant and sensitive target for HDL. The finding that HDL effectively competed with the binding of OxLDL to the platelet surface might contribute to their atheroprotective and antithrombotic properties.  相似文献   

5.
目的探讨含RGD(Arg-Gly-Asp)序列的RWR小肽通过与血小板表面整合素αⅡbβ(3GPⅡb/Ⅲ)a结合,对血小板聚集抑制率、血栓重量、血管组织结构的影响。方法取10名无心脑血管疾病的健康志愿者的全血,分离富含血小板的血浆(platelet-rich plasma,PRP),采用血小板聚集仪检测不同剂量(6.25、12.5、25、50、100、200μmol/L)RWR对二磷酸腺苷二钠(ADPNa2)诱导的血小板聚集抑制率的影响;分别用0.3、0.6、1.2mg/kgRWR作用家兔及0.6、1.2、2.4 mg/kg RWR作用大鼠,建立兔动静脉旁路循环血栓模型和大鼠三氯化铁血栓模型,观察血栓重量的变化和血管组织结构的变化。结果随着RWR剂量增加,血小板最大聚集率降低,血小板聚集抑制率增加,RWR对血小板聚集抑制率的半数有效抑制浓度(IC50)为16.0μmol/L。随着RWR剂量的增加,血栓重量减少,血栓形成的抑制率增加,血管腔堵塞程度减弱,血管腔内孔隙增加。结论 RWR小肽通过与血小板表面整合素αⅡbβ(3GPⅡb/Ⅲ)a受体结合,抑制血小板聚集和抗血栓。  相似文献   

6.
Drug delivery systems have renewed attention in recent years to achieve targeted delivery while decreasing toxic side effects. However, there are many factors that prevent optimal administration of drug delivery particles. For instance, protein corona formation and aggregation both decrease the circulation half-life of drug delivery particles, leading to sequestration to the liver and spleen. Therefore, optimal surface modifications are needed to decrease protein corona formation and avoid aggregation. In this work, polystyrene particles were modified with multi-arm and linear polyethylene glycol (PEG) to determine their aggregation profiles and protein corona formation. Multi-arm PEGs were found to aggregate more than linear PEGs, due to the change in zeta potential from unreacted end groups, which may lead to shorter circulation half-lives. Furthermore, the protein corona formation and composition were studied after different washing procedures, highlighting the importance of studying protein corona formation with undiluted blood plasma.  相似文献   

7.
Soy protein isolate nanoparticles (nanosoy) have significant applications in drug delivery, wound care systems and tissue engineering. We report an optimum technique named nanoprecipitation which enabled one‐step formation of near‐monodisperse nanosoy based on solvent displacement. Excellent control over protein aggregation was achieved, producing nanoparticles in the size range of 5–15 nm. The effect of various process parameters such as temperature, solvent/non‐solvent ratio, crosslinker content and type of surfactant on the particle size was investigated. The structural and morphological features were analysed using dynamic light scattering, X‐ray diffraction and high‐resolution transmission electron microscopy. The morphological examination indicated that the particles formed were spherical in shape and further reduction in the average particle diameter was achieved by reducing the temperature and solvent/non‐solvent ratio of the reaction medium. Surface charge and stability of nanosoy dispersions were analysed using zeta potential measurements. Further, ciprofloxacin release was monitored using nanosoy as a drug carrier. This technique provides an effective and straightforward approach offering considerable advantages in terms of economic, technical and environmental performance. © 2016 Society of Chemical Industry  相似文献   

8.
Most targeted drug delivery approaches utilize molecular targets or regional variations in chemical or structural properties of the tissue microenvironment to localize drug at disease sites. Here we briefly describe a novel nanotherapeutic drug delivery platform that relies upon local mechanical activation by high fluid shear stresses to selectively target drugs to sites of vascular obstruction. This strategy is based on the use of microscale aggregates of nanoparticles that are shear sensitive and break up into individual nanoscale components that adhere to the surface of stenotic vessels in regions of abnormally high fluid shear stress, much as natural platelets do. This biomimetic approach to targeted drug delivery offers a potential new therapeutic approach for treatment of pulmonary embolism, stroke, atherosclerosis, and other hemodynamic-related disorders that are caused by vascular clots, stenosis or obstruction.  相似文献   

9.
Nanoparticles made of biodegradable polymers have outstanding merits as a drug delivery system. Polysaccharide-based nanoparticles have been well explored because of their safety, stability, biocompatibility, biodegradability and hydrophilicity. The present review emphasizes the efforts articulated to improve polysaccharide-based nanoparticles as drug delivery tool for effective therapy and site-specific targeting of mainly anticancer agents. This review updates reports of recent research on polysaccharides-based systems particularly chitosan, alginate, cyclodextrins, hyaluronic acid, pullulan, dextran and their combinations with potential applications.  相似文献   

10.
Advances in our understanding of the genetic basis of disease susceptibility coupled with prominent successes for molecular targeted therapies have resulted in an emerging strategy of personalized medicine. This approach envisions risk stratification and therapeutic selection based on an individual's genetic makeup and physiologic state (the latter assessed through cellular or molecular phenotypes). Molecularly targeted nanoparticles can play a key role in this vision through noninvasive assessments of molecular processes and specific cell populations in vivo, sensitive molecular diagnostics, and targeted delivery of therapeutics. A superparamagnetic iron oxide nanoparticle with a cross-linked dextran coating, or CLIO, is a powerful and illustrative nanoparticle platform for these applications. These structures and their derivatives support diagnostic imaging by magnetic resonance (MRI), optical, and positron emission tomography (PET) modalities and constitute a versatile platform for conjugation to targeting ligands. A variety of conjugation methods exist to couple the dextran surface to different functional groups; in addition, a robust bioorthogonal [4 + 2] cycloaddition reaction between 1,2,4,5-tetrazene (Tz) and trans-cyclooctene (TCO) can conjugate nanoparticles to targeting ligands or label pretargeted cells. The ready availability of conjugation methods has given rise to the synthesis of libraries of small molecule modified nanoparticles, which can then be screened for nanoparticles with specificity for a specific cell type. Since most nanoparticles display their targeting ligands in a multivalent manner, a detailed understanding of the kinetics and affinity of a nanoparticle's interaction with its target (as determined by surface plasmon resonance) can yield functionally important insights into nanoparticle design. In this Account, we review applications of the CLIO platform in several areas relevant to the mission of personalized medicine. We demonstrate rapid and highly sensitive molecular profiling of cancer markers ex vivo, as part of detailed, individualized molecular phenotyping. The CLIO platform also facilitates targeted magnetic resonance and combined modality imaging (such as MR/PET/fluorescence/CT) to enable multiplexed measurement of molecular phenotypes in vivo for early diagnosis and disease classification. Finally, the targeted delivery of a photodynamic therapy agent as part of a theranostic nanoparticle successfully increased local cell toxicity and minimized systemic side effects.  相似文献   

11.
From a supersonic flow in a low pressure environment, nanoparticles were generated and the effects of corona discharge ions on the characteristics of the nanoparticles were investigated. The source material was silver, and a corona discharger was used as an ionizer to supply ions to the developed nanoparticle generator. Corona discharge ions provide nanoparticles with a repulsive electrical force that prevents aggregation of the particles. For a detailed analysis of the nanoparticle properties of size, morphology, composition, and charge, nanoparticles were investigated by means of transmission electron microscopy, an X-ray diffraction analysis, energy-dispersive spectroscopy, and by a Faraday cup current measurement. From a numerical calculation approach, the effects of the ions were predicted in terms of the formation and growth of the nanoparticles. Upon application of the corona discharge ions, the mean diameter and standard deviation of the generated nanoparticles were found to decrease. In addition, charged nanoparticles could be generated and the aggregation of particles decreased relatively.  相似文献   

12.
Polymeric nanoparticles (NPs) are versatile and effective drug delivery systems (DDS) that can be produced via nanoprecipitation of block copolymers. Yet, translation into clinical products has been limited. Thus, methods for NP production that enable rapid formulation screening and continuous production are needed. Toward this end, we engineered a coaxial jet mixer (CJM) for controlled and continuous nanoprecipitation in flow. The CJM enabled continuous assembly of poly(ethylene glycol)-block-polylactide NPs with various co-solvents and was compared to batch nanoprecipitation. Other fabricated microfluidic devices were suitable for small scale formulation screening but more limited in scalable and continuous processes. In contrast, the CJM was tolerant to all water-miscible solvents tested, enabled formulation screening, and scalable production of NPs and DDS. In total, the CJM provides a complementary approach to the process engineering of polymeric NP formation that can be used broadly for formulation screening and production.  相似文献   

13.
Photodynamic therapy (PDT) is becoming a promising way to treat various kinds of cancers, with few side effects. Porphyrinoids are the most relevant photosensitizers (PS) in PDT, because they present high extinction coefficients, biocompatibility, and excellent photochemical behavior. To maximize therapeutic effects, polymer-PS conjugates, and PS-loaded nanoparticles have been developed, with insights in improving tumor delivery. However, some drawbacks such as non-biodegradability, multistep fabrication, and low reagent loadings limit their clinical application. A novel strategy, noted by some authors as the “one-for-all” approach, is emerging to circumvent the use of additional delivery agents. This approach relies on the self-assembly of amphiphilic PS to fabricate nanostructures with improved transport properties. In this review we focus on different rational designs of porphyrinoid PS to achieve some of the following attributes in nanoassembly: i) selective uptake, through the incorporation of recognizable biological vectors; ii) responsiveness to stimuli; iii) combination of imaging and therapeutic functions; and iv) multimodal therapy, including photothermal or chemotherapy abilities.  相似文献   

14.
Therapy and diagnosis are two major categories in the clinical treatment of disease. Recently, the word "theranosis" has been created, combining the words to describe the implementation of these two distinct pursuits simultaneously. For successful theranosis, the efficient delivery of imaging agents and drugs is critical to provide sufficient imaging signal or drug concentration in the targeted disease site. To achieve this purpose, biomedical researchers have developed various nanoparticles composed of organic or inorganic materials. However, the targeted delivery of these nanoparticles in animal models and patients remains a difficult hurdle for many researchers, even if they show useful properties in cell culture condition. In this Account, we review our strategies for developing theranostic nanoparticles to accomplish in vivo targeted delivery of imaging agents and drugs. By applying these rational strategies, we achieved fine multimodal imaging and successful therapy. Our first strategy involves physicochemical optimization of nanoparticles for long circulation and an enhanced permeation and retention (EPR) effect. We accomplished this result by testing various materials in mouse models and optimizing the physical properties of the materials with imaging techniques. Through these experiments, we developed a glycol chitosan nanoparticle (CNP), which is suitable for angiogenic diseases, such as cancers, even without an additional targeting moiety. The in vivo mechanism of this particle was examined through rationally designed experiments. In addition, we evaluated and compared the biodistribution and target-site accumulation of bare and drug-loaded nanoparticles. We then focus on the targeting moieties that bind to cell surface receptors. Small peptides were selected as targeting moieties because of their stability, low cost, size, and activity per unit mass. Through phage display screening, the interleukin-4 receptor binding peptide was discovered, and we combined it with our nanoparticles. This product accumulated efficiently in atherosclerotic regions or tumors during both imaging and therapy. We also developed hyaluronic acid nanoparticles that can bind efficiently to the CD44 antigen receptors abundant in many tumor cells. Their delivery mechanism is based on both physicochemical optimization for the EPR effect and receptor-mediated endocytosis by their hyaluronic acid backbone. Finally, we introduce the stimuli-responsive system related to the chemical and biological changes in the target disease site. Considering the relatively low pH in tumors and ischemic sites, we applied pH-sensitive micelle to optical imaging, magnetic resonance imaging, anticancer drug delivery, and photodynamic therapy. In addition, we successfully evaluated the in vivo imaging of enzyme activity at the target site with an enzyme-specific peptide sequence and CNPs. On the basis of these strategies, we were able to develop self-assembled nanoparticles for in vivo targeted delivery, and successful results were obtained with them in animal models for both imaging and therapy. We anticipate that these rational strategies, as well as our nanoparticles, will be applied in both the diagnosis and therapy of many human diseases. These theranostic nanoparticles are expected to greatly contribute to optimized therapy for individual patients as personalized medicine, in the near future.  相似文献   

15.
Bioconjugation of antibodies with various payloads has diverse applications across various fields, including drug delivery and targeted imaging techniques. Fluorescent immunoconjugates provide a promising tool for cancer diagnostics due to their high brightness, specificity, stability and target affinity. Fluorescent antibodies are widely used in flow cytometry for fast and sensitive identification and collection of cells expressing the target surface antigen. Nonetheless, current approaches to fluorescent labeling of antibodies most often use random modification, along with a few rather sophisticated site-specific techniques. The aim of our work was to develop a procedure for fluorescent labeling of immunoglobulin G via periodate oxidation of antibody glycans, followed by oxime ligation with fluorescent oxyamines. Here, we report a novel technique based on an in situ oxime ligation of ethoxyethylidene-protected aminooxy compounds with oxidized antibody glycans. The approach is suitable for easy modification of any immunoglobulin G, while ensuring that antigen-binding domains remain intact, thus revealing various possibilities for fluorescent probe design. The technique was used to label an antibody to PRAME, a cancer-testis protein overexpressed in a number of cancers. A 6H8 monoclonal antibody to the PRAME protein was directly modified with protected-oxyamine derivatives of fluorescein-type dyes (FAM, Alexa488, BDP-FL); the stoichiometry of the resulting conjugates was characterized spectroscopically. The immunofluorescent conjugates obtained were applied to the analysis of bone marrow samples from patients with oncohematological diseases and demonstrated high efficiency in flow cytometry quantification. The approach can be applied for the development of various immunofluorescent probes for detection of diagnostic and prognostic markers, which can be useful in anticancer therapy.  相似文献   

16.
Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time that vascular disease patients have a higher cancer risk than the general population. During atherogenesis, the endothelial cells are activated to increase the expression of adhesion molecules such as Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell adhesion protein 1 (VCAM-1), E-selectin, and P-selectin. This biological activation of endothelial cells gives a targetability clue for nanoparticle strategies. Nanoparticle formation has a passive targeting pathway due to the increased adhesion molecule expression on the cell surface as well as increased cell activation. In addition, the VCAM-1-targeting peptide has been widely used to target the inflamed endothelial cells. Biomimetic nanoparticles using platelet and leukocyte membrane fragment strategies have been promising techniques for targeted vascular disease treatment. Cyclodextrin, a natural oligosaccharide with a hydrophobic cavity, increase the solubility of cholesterol crystals at the atherosclerotic plaque site and has been used to deliver the hydrophobic drug statin as a therapeutic in a targeted manner. In summary, nanoparticles decorated with various targeting molecules will be an effective and promising strategy for targeted vascular disease treatment.  相似文献   

17.
Targeted drug delivery to cancer cells or tumor vasculature is an attractive approach to treating cancer. We here report the synthesis of an anticancer drug conjugate composed of paclitaxel (PTX) and polysaccharide heparin through the reaction of aminated PTX with the carboxyl group of heparin. The structure of the conjugates was identified by 1H NMR and FT-IR measurements. Heparin-PTX conjugates have high solubility in aqueous solutions. Unlike physically encapsulated drugs, heparin-PTX can self-assemble to form spherical nanoparticles in aqueous solution as characterized by Transmission Electron Microscopy (TEM). Size distribution of the nanoparticles as determined by Dynamic Light Scattering (DLS) was in the range of 200-400 nm depending on the coupling ratio of PTX to heparin molecules. The anticoagulant activity of heparin-PTX conjugates was decreased compared to that of heparin, thereby reducing hemorrhagic side effects. Cellular uptake of the nanoparticles was significantly enhanced compared to heparin as visualized by Confocal Laser Scanning Microscopy (CLSM). Furthermore, heparin-PTX conjugate nanoparticles exhibited higher cytotoxicity against KB cancer cells than did free PTX. The cytotoxicity of nanoparticles was found to depend on the amount of PTX conjugated to heparin as well as the conjugate concentration. Thus, conjugation of PTX to heparin may be useful for the solubilization and targeted delivery of PTX to solid tumors.  相似文献   

18.
Background. Today there are many devices that can be used to study blood clotting disorders by identifying abnormalities in blood platelets. The Total Thrombus Formation Analysis System is an automated microchip flow chamber system that is used for the quantitative analysis of clot formation under blood flow conditions. For several years, researchers have been using a tool to analyse various clinical situations of patients to identify the properties and biochemical processes occurring within platelets and their microenvironment. Methods. An investigation of recent published literature was conducted based on PRISMA. This review includes 52 science papers directly related to the use of the Total Clot Formation Analysis System in relation to bleeding, surgery, platelet function assessment, anticoagulation monitoring, von Willebrand factor and others. Conclusion. Most available studies indicate that The Total Thrombus Formation Analysis System may be useful in diagnostic issues, with devices used to monitor therapy or as a significant tool for predicting bleeding events. However, T-TAS not that has the potential for diagnostic indications, but allows the direct observation of the flow and the interactions between blood cells, including the intensity and dynamics of clot formation. The device is expected to be of significant value for basic research to observe the interactions and changes within platelets and their microenvironment.  相似文献   

19.
A major advance in drug discovery and targeted therapy directed at cancer cells may be achieved by the exploitation and immunomodulation of their unique biological properties. This review summarizes our efforts to develop novel chemo-thermo-immunotherapy (CTI therapy) by conjugating a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP: amine analog of tyrosine), with magnetite nanoparticles (MNP). In our approach, NPrCAP provides a unique drug delivery system (DDS) because of its selective incorporation into melanoma cells. It also functions as a melanoma-targeted therapeutic drug because of its production of highly reactive free radicals (melanoma-targeted chemotherapy). Moreover, the utilization of MNP is a platform to develop thermo-immunotherapy because of heat shock protein (HSP) expression upon heat generation in MNP by exposure to an alternating magnetic field (AMF). This comprehensive review covers experimental in vivo and in vitro mouse melanoma models and preliminary clinical trials with a limited number of advanced melanoma patients. We also discuss the future directions of CTI therapy.  相似文献   

20.
Nanoparticle technology is being incorporated into many areas of molecular science and biomedicine. Because nanoparticles are small enough to enter almost all areas of the body, including the circulatory system and cells, they have been and continue to be exploited for basic biomedical research as well as clinical diagnostic and therapeutic applications. For example, nanoparticles hold great promise for enabling gene therapy to reach its full potential by facilitating targeted delivery of DNA into tissues and cells. Substantial progress has been made in binding DNA to nanoparticles and controlling the behavior of these complexes. In this article, we review research on binding DNAs to nanoparticles as well as our latest study on non-viral gene delivery using polyethylenimine-coated magnetic nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号