首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
面向产品全生命周期评价环境决策模型研究   总被引:4,自引:1,他引:4  
在ISO14000系列国际标准的基础上,提出了在数据清单分析和影响评价的过程中,利用模糊层次分析法建立产品全生命周期评价环境决策模型的方法。模型在获得产品全生命周期环境影响数据清单之后,通过对环境影响因子的权重 的确定,可以对产品的环境影响进行量化分析,并根据分析结果评价产品的环境影响值,从而实现产品环境友好度评价由定性向定量的转化。  相似文献   

2.
The environmental impact of textile supply chain of selected cotton, wool and polyester apparels consumed in Australia was accessed in this study using life cycle assessment methodology. The environmental impact category, climate change was used for this assessment. Climate change is related to the emissions of greenhouse gases to the atmosphere and the reference unit of climate change impact category is kg CO2 equivalent. The environmental impact of these apparels was then scaled up based on their total consumption in Australia in 2015. The results highlight the differences in environmental impact between the three apparels. This study demonstrates that the main contributor to climate change is the consumer use stage for cotton and polyester apparel whereas wool apparel production process contributes more impact than consumer use stage. Energy use is the main factor of environmental impact. Sensitivity analysis was carried out based on the different parameters used to develop baseline model, such as change of transport from airfreight to sea freight; change of transport distance, change of consumer laundering behaviour. Around 10% CO2 equivalent emission can be reduced from base case by reducing washing machine energy up to 40%. A high efficient washing machine and full load machine wash can save energy and reduce carbon emission.  相似文献   

3.
In addition to available country or site-specific life cycle studies on Jatropha biodiesel we present a generic, location-independent life cycle assessment and provide a general but in-depth analysis of the environmental performance of Jatropha biodiesel for transportation. Additionally, we assess the influence of changes in byproduct use and production chain. In our assessments, we went beyond the impact on energy requirement and global warming by including impacts on ozone layer and terrestrial acidification and eutrophication. The basic Jatropha biodiesel system consumes eight times less nonrenewable energy than conventional diesel and reduces greenhouse gas emissions by 51%. This result coincides with the lower limit of the range of reduction percentages available in literature for this system and for other liquid biofuels. The impact on the ozone layer is also lower than that provoked by fossil diesel, although eutrophication and acidification increase eight times. This study investigates the general impact trends of the Jatropha system, although not considering land-use change. The results are useful as a benchmark against which other biodiesel systems can be evaluated, to calculate repayment times for land-use change induced carbon loss or as guideline with default values for assessing the environmental performance of specific variants of the system.  相似文献   

4.
5.
基于生命周期评价(LCA)理论,探讨界定食品生命周期碳排放的核算范围,对食品生命周期从原料生产、加工、消费到废物处理各阶段的碳排放进行清单分析,并提出了食品生命周期碳排量的评价框架和方法。  相似文献   

6.
产品生命周期评价体系研究   总被引:6,自引:0,他引:6  
为更好地用量化的数据来判断产品的绿色程度,以利于产品生命周期评价,建立了由产品层次维、生命周期维、指标维构成的生命周期评价的三维集成体系结构以及由环境属性指标、资源属性指标、能源属性指标和经济性指标构成的生命周期评价指标体系,并针对评价过程中生命周期权重的确定,产品环境属性数据库的建立以及环境影响因子的确定,给出了有效的解决方法。  相似文献   

7.
Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.  相似文献   

8.
A fiberglass composite reinforced with carbon nanofibers (CNF) at the resin-fiber interface is being developed for potential use in wind turbine blades. An energy and midpoint impact assessment was performed to gauge impacts of scaling production to blades 40 m and longer. Higher loadings force trade-offs in energy return on investment and midpoint impacts relative to the base case while remaining superior to thermoelectric power generation in these indicators. Energy-intensive production of CNFs forces impacts disproportionate to mass contribution. The polymer nanocomposite increases a 2 MW plant's global warming potential nearly 100% per kWh electricity generated with 5% CNF by mass in the blades if no increase in electrical output is realized. The relative scale of impact must be compensated by systematic improvements whether by deployment in higher potential zones or by increased life span; the trade-offs are expected to be significantly lessened with CNF manufacturing maturity. Significant challenges are faced in evaluating emerging technologies including uncertainty in future scenarios and process scaling. Inventories available for raw materials and monte carlos analysis have been used to gain insight to impacts of this development.  相似文献   

9.
Halting current rates of biodiversity loss will be a defining challenge of the 21st century. To assess the effectiveness of strategies to achieve this goal, indicators and tools are required that monitor the driving forces of biodiversity loss, the changing state of biodiversity, and evaluate the effectiveness of policy responses. Here, we review the use of indicators and approaches to model biodiversity loss in Life Cycle Assessment (LCA), a methodology used to evaluate the cradle-to-grave environmental impacts of products. We find serious conceptual shortcomings in the way models are constructed, with scale considerations largely absent. Further, there is a disproportionate focus on indicators that reflect changes in compositional aspects of biodiversity, mainly changes in species richness. Functional and structural attributes of biodiversity are largely neglected. Taxonomic and geographic coverage remains problematic, with the majority of models restricted to one or a few taxonomic groups and geographic regions. On a more general level, three of the five drivers of biodiversity loss as identified by the Millennium Ecosystem Assessment are represented in current impact categories (habitat change, climate change and pollution), while two are missing (invasive species and overexploitation). However, methods across all drivers can be greatly improved. We discuss these issues and make recommendations for future research to better reflect biodiversity loss in LCA.  相似文献   

10.
A comparative life cycle assessment examining soybean and petroleum-based lubricants is compiled using Monte Carlo analysis to assess system variability. Experimental data obtained from an aluminum manufacturing facility indicate significantly less soybean lubricant is required to achieve similar or superior performance. With improved performance and a lower use rate, a transition to soybean oil results in lower aggregate impacts of acidification, smog formation, and human health from criteria pollutants. Regardless of quantity consumed, soybean-based lubricants exhibit significant climate change and fossil fuel use benefits; however, eutrophication impacts are much greater due to non-point nutrient emissions. Fundamental tradeoffs in the carbon and nitrogen cycles are addressed in the analysis, demonstrating that a transition to soybean oil may result in climate change benefits at the expense of regional water quality.  相似文献   

11.
12.
Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.  相似文献   

13.
14.
本项目的研究目的是比较5个服饰直接数码喷墨印花机制造商印制产品的色牢度.研究数据有助于帮助印花机制造商对其产品质量进行评估,在这之前还未有利用直接喷墨印花产品家用水洗色牢度来评价印花性能的研究.  相似文献   

15.
16.
Greenhouse gas (GHG) emissions and their potential effect on the environment has become an important national and international issue. Dairy production, along with all other types of animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from dairy farms. Component models for predicting all important sources and sinks of CH4, N2O, and CO2 from primary and secondary sources in dairy production were integrated in a software tool called the Dairy Greenhouse Gas model, or DairyGHG. This tool calculates the carbon footprint of a dairy production system as the net exchange of all GHG in CO2 equivalent units per unit of energy-corrected milk produced. Primary emission sources include enteric fermentation, manure, cropland used in feed production, and the combustion of fuel in machinery used to produce feed and handle manure. Secondary emissions are those occurring during the production of resources used on the farm, which can include fuel, electricity, machinery, fertilizer, pesticides, plastic, and purchased replacement animals. A long-term C balance is assumed for the production system, which does not account for potential depletion or sequestration of soil carbon. An evaluation of dairy farms of various sizes and production strategies gave carbon footprints of 0.37 to 0.69 kg of CO2 equivalent units/kg of energy-corrected milk, depending upon milk production level and the feeding and manure handling strategies used. In a comparison with previous studies, DairyGHG predicted C footprints similar to those reported when similar assumptions were made for feeding strategy, milk production, allocation method between milk and animal coproducts, and sources of CO2 and secondary emissions. DairyGHG provides a relatively simple tool for evaluating management effects on net GHG emissions and the overall carbon footprint of dairy production systems.  相似文献   

17.
Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management.  相似文献   

18.
Particulate matter (PM) is a significant contributor to death and disease globally. This paper summarizes the work of an international expert group on the integration of human exposure to PM into life cycle impact assessment (LCIA), within the UNEP/SETAC Life Cycle Initiative. We review literature-derived intake fraction values (the fraction of emissions that are inhaled), based on emission release height and "archetypal" environment (indoor versus outdoor; urban, rural, or remote locations). Recommended intake fraction values are provided for primary PM(10-2.5) (coarse particles), primary PM(2.5) (fine particles), and secondary PM(2.5) from SO(2), NO(x), and NH(3). Intake fraction values vary by orders of magnitude among conditions considered. For outdoor primary PM(2.5), representative intake fraction values (units: milligrams inhaled per kilogram emitted) for urban, rural, and remote areas, respectively, are 44, 3.8, and 0.1 for ground-level emissions, versus 26, 2.6, and 0.1 for an emission-weighted stack height. For outdoor secondary PM, source location and source characteristics typically have only a minor influence on the magnitude of the intake fraction (exception: intake fraction values can be an order of magnitude lower for remote-location emission than for other locations). Outdoor secondary PM(2.5) intake fractions averaged over respective locations and stack heights are 0.89 (from SO(2)), 0.18 (NO(x)), and 1.7 (NH(3)). Estimated average intake fractions are greater for primary PM(10-2.5) than for primary PM(2.5) (21 versus 15), owing in part to differences in average emission height (lower, and therefore closer to people, for PM(10-2.5) than PM(2.5)). For indoor emissions, typical intake fraction values are ~1000-7000. This paper aims to provide as complete and consistent an archetype framework as possible, given current understanding of each pollutant. Values presented here facilitate incorporating regional impacts into LCIA for human health damage from PM.  相似文献   

19.
While the use of biodiesel appears to be a promising alternative to petroleum fuel, the replacement of fossil fuel by biofuel may not bring about the intended climate cooling because of the increased soil N2O emissions due to N-fertilizer applications. Using a life cycle assessment approach, we assessed the influence of soil nitrous oxide (N2O) emissions on the life cycle global warming potential of the production and combustion of biodiesel from canola oil produced in a semiarid climate. Utilizing locally measured soil N2O emissions, rather than the Intergovernmental Panel on Climate Change (IPCC) default values, decreased greenhouse gas (GHG) emissions from the production and combustion of 1 GJ biodiesel from 63 to 37 carbon dioxide equivalents (CO2-e)/GJ. GHG were 1.1 to 2.1 times lower than those from petroleum or petroleum-based diesel depending on which soil N2O emission factors were included in the analysis. The advantages of utilizing biodiesel rapidly declined when blended with petroleum diesel. Mitigation strategies that decrease emissions from the production and application of N fertilizers may further decrease the life cycle GHG emissions in the production and combustion of biodiesel.  相似文献   

20.
The study fills a gap in existing literature by comparing process-based and E10-based life cycle assessment (LCA) methods empirically in service industries. Despite the numerous methodological differences, the methods were found mostly to produce the same environmentally significant processes for the case organization: the use of electricity in the premises, the construction of the premises, the business travel by cars, the heating of the premises, and the business flights. However, the process-based LCA could not be used to assess the environmental impacts of purchased services properly. The study also recognized most of the theoretical differences listed in the literature, and found the ones related to the cut-offs in purchased services, the price inhomogeneity, and the industry-atypical electricity production have the greatest influence on results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号