共查询到20条相似文献,搜索用时 15 毫秒
1.
L. REIS B. LI M. LEITE M. DE FREITAS 《Fatigue & Fracture of Engineering Materials & Structures》2005,28(5):445-454
Fatigue crack path prediction and crack arrest are very important for structural safety. In real engineering structures, there are many factors influencing the fatigue crack paths, such as the material type (microstructure), structural geometry and loading path, etc. In this paper, both experimental and numerical methods are applied to study the effects of loading path on crack orientations. Experiments were conducted on a biaxial testing machine, using specimens made of two steels: 42CrMo4 and CK45 (equivalent to AISI 1045), with six different biaxial loading paths. Fractographical analyses of the plane of the stage I crack propagation were carried out and the crack orientations were measured using optical microscopy. The multiaxial fatigue models, such as the critical plane models and also the energy‐based critical plane models, were applied for predicting the orientation of the critical plane. Comparisons of the predicted orientation of the damage plane with the experimental observations show that the shear‐based multiaxial fatigue models provide good predictions for stage I crack growth for the ductile materials studied in this paper. 相似文献
2.
B. Li J. L. T. Santos & M. DE Freitas 《Fatigue & Fracture of Engineering Materials & Structures》2001,24(3):165-177
A computerized procedure is presented and evaluated for application examples of long-life fatigue analyses of metallic materials under complex multiaxial loading. The method is based on the stress invariants and uses the minimum circumscribed ellipse approach for evaluating the effective shear stress amplitude under complex multiaxial loading. The applicability of the procedure for handling non-proportional loading is examined through typical examples such as combined normal/shear stresses and combined bi-axial normal stresses with complex stress time histories. The effects of phase shift angles, frequency ratios and waveforms on fatigue endurance were re-analysed and compared with available experimental results from the literature. The comparison shows that the presented procedure based on stress invariants is a potential conservative engineering approach, very suitable for fast fatigue evaluation in the integrated computer aided fatigue design. 相似文献
3.
F.P. YANG X.G. YUAN Z.B. KUANG 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(5):425-432
In this study, the specimens made of carbon steel S45 with an initial surface straight edge notch were subjected to combined cyclic axial‐torsion loading at room temperature. The fatigue life, surface crack extension direction and crack length were experimentally investigated. The effects of loading path, stress amplitude ratio and phase angle on the crack growth behaviour were also discussed. The results showed that, under the combination of cyclic axial and torsion loading, the tension stress amplitude had more effect on the initial crack growth path than the latter. The shear stress amplitude contributed mainly to the latter crack extension. The crack extension path was mainly determined by the stress amplitudes and the ratio of the normal stress to the shear stress, and almost independent of the mean stresses. The increase of the tension stress amplitude and shear stress amplitude would both accelerate the crack growth rate. 相似文献
4.
A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading 总被引:2,自引:0,他引:2
X. Chen S. Xu & D. Huang 《Fatigue & Fracture of Engineering Materials & Structures》1999,22(8):679-686
A series of multiaxial low-cycle fatigue experiments was performed on 45 steel under non-proportional loading. The present evaluations of multiaxial low-cycle fatigue life were systematically analysed. A combined energy density and critical plane concept is proposed that considers different failure mechanisms for a shear-type failure and a tensile-type failure, and from which different damage parameters for the critical plane-strain energy density are proposed. For tensile-type failures in material 45 steel and shear-type failures in material 42CrMo steel, the new damage parameters permit a good prediction for multiaxial low-cycle fatigue failure under non-proportional loading. The currently used critical plane models are a special and simple form of the new model. 相似文献
5.
V. DOQUET S. POMMIER 《Fatigue & Fracture of Engineering Materials & Structures》2004,27(11):1051-1060
Mode II fatigue crack growth tests as well as tests in sequential mode I and then mode II were performed on ferritic‐pearlitic steel. For ΔKII ranging from 7 to , bifurcation occurs after 12–450 μm of coplanar growth at a decreasing speed. By contrast, hundreds of micrometres of constant speed coplanar growth were obtained under sequential mode I and then mode II loading, for and ΔKI ranging from 0.25 to 1.0 ΔKII . The crack growth rate is a simple sum of the contributions of each mode for ΔKI= 0.25 ΔKII but above this value a synergetic effect is found. The mechanism of this fast‐propagation mode is discussed in the light of strain range maps ahead of the crack tip obtained by digital SEM image correlation and elastic–plastic finite element calculations. The stability of the crack path according to the maximum growth rate criterion is demonstrated. 相似文献
6.
Detailed microscopic analyses have been made on the high-cycle mechanisms in 1045 steel under various stress-controlled axial-torsional loadings. A special attention has been paid to a critical example of non-proportional loading, i.e., 90° out-of-phase loading with different stress ratios. The replica technique has been used to monitor crack initiation and propagation from the microstructure scale. The orientations of persistent slip bands and Stage I cracks are in good agreement with the critical plane concept. The evolutions of crack length with cycle life as well as the crack aspect ratios depend on the loading condition. However at a given life, the data are consolidated in terms of crack depth versus cycle life. The McDiarmid parameter correlates stress-life data under proportional loadings. However, it underestimates fatigue lives under out-of-phase loading at high stress ratio and it overestimates them in the case where all planes experience the same shear stress amplitude (stress ratio = 0.5). More damaging mechanisms are involved in crack initiation and crack propagation. It is recommended to test the fatigue performance of materials in this last condition that involves the worst damage mechanisms. 相似文献
7.
8.
Zhi‐Qiang Tao Ming Zhang Yu Zhu De‐Guang Shang Tian Cai Zi‐Ling Zhang Bin Bai 《Fatigue & Fracture of Engineering Materials & Structures》2020,43(1):92-109
An innovative numerical methodology is presented for fatigue lifetime estimation of notched bodies experiencing multiaxial cyclic loadings. In the presented methodology, an evaluation approach of the local nonproportionality factor F for notched specimens, which defines F as the ratio of the pseudoshear strain range at 45° to the maximum shear plane and the maximum shear strain range, is proposed and discussed deeply. The proposed evaluation method is incorporated into the material cyclic stress‐strain equation for purpose of describing the nonproportional hardening behavior for some material. The comparison between multiaxial elastic‐plastic finite element analysis (FEA) and experimentally measured strains for S460N steel notched specimens shows that the proposed nonproportionality factor estimation method is effective. Subsequently, the notch stresses and strains calculated utilizing multiaxial elastic‐plastic FEA are used as input data to the critical plane‐based fatigue life prediction methodology. The prediction results are satisfactory for the 7050‐T7451 aluminum alloy and GH4169 superalloy notched specimens under multiaxial cyclic loading. 相似文献
9.
一种多轴向随机激励下结构疲劳寿命分析方法 总被引:1,自引:0,他引:1
提出了一种多轴向随机激励下结构疲劳寿命估计的频域分析方法。首先,对结构进行频响分析,得到在基础加速度激励下的应力频响函数矩阵,通过随机振动分析,得到结构应力的功率谱密度矩阵;其次,采用等效的Von Mises应力功率谱密度将多轴应力问题转化为单轴应力问题;最后,利用单轴应力疲劳寿命估计的频域分析方法对结构疲劳寿命进行估计。对一典型构件在多轴向随机激励下的疲劳寿命进行了计算,并与实验结果进行了对比。另外,对构件在多轴向同时激励与单轴分别激励的疲劳损伤结果进行了对比分析,表明多轴向同时振动具有明显的多轴效应,因此进行多轴向振动疲劳研究十分必要。 相似文献
10.
Multiaxial low‐cycle fatigue life evaluation under different non‐proportional loading paths 下载免费PDF全文
W. L. Qu E. N. Zhao Q. Zhou Y.‐L. Pi 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(5):1064-1076
This paper presents analytical and experimental investigations for fatigue lives of structures under uniaxial, torsional, multiaxial proportional, and non‐proportional loading conditions. It is known that the rotation of principal stress/strain axes and material additional hardening due to non‐proportionality of cycle loading are the 2 main causes resulting in shorter fatigue lives compared with those under proportional loading. This paper treats these 2 causes as independent factors influencing multiaxial fatigue damage and proposes a new non‐proportional influencing parameter to consider their combined effects on the fatigue lives of structures. A critical plane model for multiaxial fatigue lives prediction is also proposed by using the proposed non‐proportional influencing factor to modify the Fatemi‐Socie model. The comparison between experiment results and theoretical evaluation shows that the proposed model can effectively predict the fatigue life due to multiaxial non‐proportional loading. 相似文献
11.
Fatigue life prediction of vulcanized natural rubber under proportional and non-proportional loading
Y. WANG W. YU X. CHEN L. YAN 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(1):38-48
To investigate the multiaxial fatigue properties of vulcanized natural rubber (NR), a series of tests including both proportional and non-proportional loading paths on small specimens were performed. The existing fatigue life prediction approaches are evaluated with life data obtained in the tests. It is shown that the equivalent strain approach presents a good prediction of the fatigue life although it has a certain shortcoming. Compared with the strain energy density (SED) model, the cracking energy density (CED) model represents the portion of SED that is available to be released by virtue of crack growth on a given material plane, so it gives better results in the life prediction. Some of the approaches based on critical plane which are widely used for metal fatigue are also tested in this paper, and the results show that the Chen-Xu-Huang (CXH) model gives a better prediction, compared with the Smith-Watson-Topper (SWT) and Wang–Brown (WB) model. A modified Fatemi–Socie's model has also been introduced, and the results show that the modified model can be used to predict the fatigue life of rubber material well. 相似文献
12.
Studies on crack growth in a panel with an inclined crack subjected to biaxial tensile fatigue loading are presented. The strain energy density factor approach is used to characterize the fatigue crack growth. The crack growth trajectory as a function of the initial crack angle and the biaxiality ratio is also predicted. The analysis is applied to 7075-T6 aluminium alloy to predict the dependence of crack growth rate on the crack angle. The effect of crack angle on the cyclic life of the component and on the cyclic life ratio is presented and discussed. 相似文献
13.
R. Sunder 《International Journal of Fatigue》1985,7(1):3-12
Procedures have been developed for computer-controlled crack propagation testing under random load sequences. They include certain features which are not available in conventional systems, but which appear essential for random load testing. These include the capability to simulate any desired K-function on standard laboratory specimens and continuous on-line rainflow analysis of the test load sequence to exclude cycles falling below given values of threshold stress intensity, stress level or range. The system also includes a procedure for automated crack-opening displacement based crack opening/closing load level measurement. Experimental studies on AlCu alloy sheet material point to a requirement for development of standards for spectrum loading crack growth testing. 相似文献
14.
15.
R. HALL J. BYRNE T. ZHAO J. TONG 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(5):386-397
Foreign object damage (FOD) has been identified as one of the main life limiting factors for aeroengine blades, with the leading edge of aerofoils particularly susceptible. In this work, a generic edge ‘aerofoil’ geometry was utilized in a study of early fatigue crack growth behaviour due to FOD under low cycle fatigue (LCF), high cycle fatigue (HCF) and combined LCF and HCF loading conditions. Residual stresses due to FOD were analyzed using the finite element method. The longitudinal residual stress component along the crack path was introduced as a nodal temperature distribution, and used in the correction of the stress intensity factor range. The crack growth was monitored using a nanodirect current potential drop (DCPD) system and crack growth rates were correlated with the corrected stress intensity factor considering the residual stresses. The results were discussed with regard to the role of residual stresses in the characterization of fatigue crack growth. Small crack growth behaviour in FODed specimens was revealed only after the residual stresses were taken into account in the calculation of the stress intensity factor, a feature common to LCF, HCF and combined LCF + HCF loading conditions. 相似文献
16.
A curvilinear integral method for multiaxial fatigue life computing under non-proportional, arbitrary or random stressing 总被引:1,自引:0,他引:1
S. Stephanov 《International Journal of Fatigue》1993,15(6):467-472
Some popular concepts for reducing three variable stress components σx(t), σy(t), τxy(t) to one equivalent amplitude spectrum, and the use of the linear damage accumulation hypothesis, have been evaluated as not fully correct when these components vary non-proportionally and arbitrarily. A different approach is suggested: computing damage accumulation by means of an integral directly on the non-radial arbitrary path, called the ‘trajectory’, described in the σx−σy plane when τxy(t) = 0, in the σx−τxy plane when σy(t) = 0, or in a special coordinate space where this trajectory is invariant of stress directions x, y. If the trajectory is random, it may be replaced by a statistical two-dimensional density of distribution. The integrand, called the R-function, is derived from various S−N fatigue curves under different determined loadings. Thus the traditional S−N function is replaced by the R-function for direct damage summation with differential analysis, which allows the loading to be arbitrary (non-cyclic, multiaxial and non-proportional). The method works by means of computer programs and is applicable to real structures. 相似文献
17.
F.-P. YANG Z.-B. KUANG 《Fatigue & Fracture of Engineering Materials & Structures》2005,28(11):963-970
In this paper, the fatigue life, surface crack extension direction and crack growth rate in an elastic bar with a circular cross section are determined through experiments under cyclic torsion with axial static and cyclic tension/compression loading. The effects of the loading type, loading value and stress ratio on the crack growth behaviour are discussed. The results show that, under pure fatigue torsion loading, the crack extension direction is almost the same whatever the value of torsion loading. Under fatigue torsion with cyclic tension loading, it is found that the crack extension direction is mainly determined by the alternating parts of the stresses and is almost independent of the average parts of the stresses, whereas the fatigue life is obviously dependent on the average stress. 相似文献
18.
Analytical study of fatigue crack growth in AA7050 notched specimens under spectrum loading 总被引:2,自引:0,他引:2
An analytical study of fatigue crack growth in aluminium alloy 7050-T7451 notched specimens under a fighter aircraft wing root bending moment spectrum was conducted. The crack growth data were measured by quantitative fractography for three groups of specimens with different stress concentration geometrical features. Under spectrum loading and for each spectrum peak stress level, a minimum of five specimens were tested. Based on the analysis of the measured spectrum crack growth data using linear elastic fracture mechanics, it was found that the concept of geometry factors formulated in the stress intensity factor could not collapse the crack growth rate data derived from each stress concentration feature, particularly near the small crack growth region. In order to investigate the possible reasons for this, three-dimensional elastic-plastic finite element analysis was used to determine notch plastic zone sizes for each stress concentration geometry. As a consequence, an alternative crack growth driving force by considering both notch elastic-plastic stress field and gross net-section stress field was proposed and used to interpret the fatigue crack growth data under spectrum loading. It was found that the predictions of crack growth under spectrum loading for different stress concentration factors at different peak load levels agree reasonably well with the experimental results. 相似文献
19.
Evaluation of fatigue life for titanium alloy TC4 under variable amplitude multiaxial loading 下载免费PDF全文
Z.‐R. Wu X.‐T. Hu Z. X. Li Y.‐D. Song 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(4):402-409
Fatigue tests under variable amplitude multiaxial loading were conducted on titanium alloy TC4 tubular specimens. A method to estimate the fatigue life under variable amplitude multiaxial loading has been proposed. Multiaxial fatigue parameter based on Wu–Hu–Song approach and rainflow cycle counting and Miner–Palmgren rule were applied in this method. The capability of fatigue life prediction for the proposed method was checked against the test data of TC4 alloy under variable amplitude multiaxial loading. The prediction results are all within a factor of two scatter band of the test results. 相似文献
20.
L. REIS B. LI M. De FREITAS 《Fatigue & Fracture of Engineering Materials & Structures》2004,27(9):775-784
In order to study the use of a local approach to predict crack‐initiation life on notches in mechanical components under multiaxial fatigue conditions, the study of the local cyclic elasto‐plastic behaviour and the selection of an appropriate multiaxial fatigue model are essential steps in fatigue‐life prediction. The evolution of stress–strain fields from the initial state to the stabilized state depends on the material type, loading amplitude and loading paths. A series of biaxial tension–compression tests with static or cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Specimens were made of an alloy steel 42CrMo4 quenched and tempered. The shear stress relaxations of the cyclic tension–compression with a steady torsion angle were observed for various loading levels. Finite element analyses were used to simulate the cyclic behaviour and good agreement was found. Based on the local stabilized cyclic elastic–plastic stress–strain responses, the strain‐based multiaxial fatigue damage parameters were applied and correlated with the experimentally obtained lives. As a comparison, a stress‐invariant‐based approach with the minimum circumscribed ellipse (MCE) approach for evaluating the effective shear stress amplitude was also applied for fatigue life prediction. The comparison showed that both the equivalent strain range and the stress‐invariant parameter with non‐proportional factors correlated well with the experimental results obtained in this study. 相似文献