共查询到19条相似文献,搜索用时 62 毫秒
1.
为了进一步提高水性聚氨酯涂料的阻燃抗蚀性能,以水性聚氨酯乳液为基料,聚磷酸铵(APP)、季戊四醇(PER)、三聚氰胺(MEL)、锐钛型二氧化钛(Ti O2)为阻燃体系,以环烷酸咪唑啉衍生物为缓蚀剂,配制成膨胀型防火缓蚀涂料。采用大板燃烧法、HTC-1热重分析仪对涂料的性能进行了表征;通过Hitachi-S4700扫描电镜(SEM)分析了涂炭层的微观结构;通过CS350电化学工作站测量了其极化曲线和电化学阻抗谱。结果表明,环烷酸咪唑啉衍生物的含量对水性聚氨酯防火缓蚀涂料的阻燃缓蚀性能影响显著:含有12.5%APP,3.8%PER,7.4%MEL,2.2%Ti O2,3.2%环烷酸咪唑啉衍生物时,涂料的耐燃时间可达到59 min,缓蚀效果较佳,原因是环烷酸咪唑啉衍生物通过与基料的良好混合,降低了基料对缓蚀剂的掩蔽作用,形成了一定的空间交联结构,提高了成炭强度和隔热能力,进而提升了涂料的阻燃缓蚀性能。 相似文献
2.
阻燃水性聚氨酯研究进展 总被引:5,自引:0,他引:5
阻燃水性聚氨酯是水性聚氨酯功能化的重要方向之一,具有较高的实际应用价值。根据阻燃剂在水性聚氨酯中的存在方式,可以将阻燃水性聚氨酯分为共混复配型和反应型两大类。文中主要从聚氨酯硬段阻燃改性与软段阻燃改性两个方面综述了反应型阻燃水性聚氨酯的研究现状,并展望了阻燃水性聚氨酯的发展趋势。 相似文献
3.
新型聚氨酯防火涂料的阻燃机理 总被引:5,自引:0,他引:5
采用元素分析(ELA)、扫描电镜(SEM)、红外光谱(FT-IR)、^13C-棱磁共振(MAS-NMR ^13C)等手段,从凝聚相和气相两方面深入分析了PU/APP/Carbonific防火涂料体系的阻燃机理. 相似文献
4.
5.
6.
对使用防火涂料进行防火阻燃处理的认识与思考 总被引:1,自引:1,他引:0
诸德志 《Journal of Flame Retardant Material and Technology》1999,(5):12-16
本文简述了防火涂料的分类及其防火阻燃机理;针对现代建筑业的发展,指出有关建设结构、装饰材料进行防火处理的必要性及依据;详细分析了防火涂料在使用中存在的问题并提出相应对策,尤其指出应着重注意的问题。 相似文献
7.
丙烯酸酯类水性超薄膨胀型钢结构防火涂料的研制 总被引:1,自引:0,他引:1
以改性丙烯酸酯类乳液为成膜物质,聚磷酸铵、季戊四醇、三聚氰胺为膨胀阻燃体系,并添加可膨胀石墨、硫酸镁晶须进行改性,制备水性超薄膨胀型钢结构防火涂料。采用垂直燃烧法、热重分析(TGA)、扫描电镜(SEM)、X射线衍射(XRD)等方法研究了防火涂层的结构与耐火性能,结果表明,以硅丙乳液和环氧改性丙烯酸酯乳液复配为成膜物质,受火膨胀后防火涂层形成了致密的"蜂窝"状结构,获得较好的防火性能。钛白粉在高温中能转变成焦磷酸钛,对提高防火性能起到积极的作用。添加可膨胀石墨和晶须具有明显的协效阻燃效果。3%可膨胀石墨和3%硫酸镁晶须共同改性的防火涂层在800℃的残余质量为36%。 相似文献
8.
9.
10.
硬段阻燃改性水性聚氨酯的性能 总被引:2,自引:0,他引:2
对二溴新戊二醇(DBNPG)阻燃改性水性聚氨酯的性能进行了研究。对改性后的乳液进行了高温稳定性、低温稳定性、力学稳定性测试,同时用透射电镜表征了聚氨酯在水中的分散状态,用Brookfied黏度计测试其流变性能。对水性聚氨酯胶膜进行了力学性能,吸水率,接触角测试。实验发现,相比未改性的水性聚氨酯,在相同二羟甲基丙酸(DMPA)含量的前提下,DBNPG改性的水性聚氨酯乳液稳定性良好,聚氨酯粒径增加,分布均匀且形状规整,胶膜接触角增大,吸水率显著减小。此外随改性程度的增加,拉伸强度逐渐增大,断裂伸长率逐渐减小。流变性能测试表明两者均为牛顿流体。 相似文献
11.
基于磷-氢键与羰基加成反应采用"一锅法"合成3种含羟基的反应型磷系阻燃剂:2-(5,5-二甲基-2-氧代-1,3,2-二氧杂磷杂环己基)-2-丙醇(DMTO)、2-(5,5-二甲基-2-氧代-1,3,2-二氧杂磷杂环己基)-2-苯乙醇(RLGL)和2,4,8,10-四氧杂-3,9-二磷杂[5.5]十一烷-3,9-二氧-3,9-二异丙醇(DPDM)。以红外光谱、核磁共振、质谱及热重分析对其进行表征,进一步将DMTO,RLGL和DPDM以不同添加量对聚氨酯(PU)进行阻燃改性,研究化合物的构效关系。结果表明,3种阻燃剂对PU皆具有明显的促进成炭作用,随添加量的增加,极限氧指数(LOI)增长显著,其中PU-DMTO 10%的LOI值可达26%,使用量为5%时,阻燃PU的UL-94等级都可达V-0级。扫描电镜测试结果表明,其燃烧后残炭表面呈致密炭层,具有凝聚相阻燃特征。 相似文献
12.
分别以2种环氧固化体系作为基料树脂,以聚磷酸铵(APP)、双季戊四醇(DPER)、三聚氰胺(MEL)为膨胀阻燃体系(IFR),制得膨胀型防火涂层。采用燃烧背温测试仪、锥形量热仪、热重分析仪及应力流变仪对2种环氧防火涂层的耐火阻燃性能及炭层力学强度进行了测试。结果表明,与脂肪胺为固化剂的环氧体系相比,以芳香胺为固化剂的环氧体系与膨胀阻燃剂有更好的匹配性,能有效参与体系成炭,形成更加完整致密、强度更高的炭层,从而提高涂层的耐火隔热性能,降低涂层的热释放及烟释放,具有更高的耐火阻燃效率。 相似文献
13.
以脲醛树脂(UF)和硅丙乳液(SEA)树脂分别为基料,三聚氰胺磷酸盐(MP)-三聚氰胺(MEL)-季戊四醇(PER)为膨胀阻燃体系,制备膨胀型阻燃涂料。通过极限氧指数、热重分析、锥形量热、扫描电镜对涂料阻燃性能表征分析证明,与SEA相比,UF分解温度较低,残炭量提高了11.53%;与硅丙乳液基三聚氰胺磷酸盐涂料(SEA/MP)木材阻燃涂料相比,脲醛树脂基三聚氰胺磷酸盐涂料(UF/MP/MEL/PER)木材阻燃涂料具有良好的阻燃性能、热稳定性和抑烟性能,残炭量提高了5.05%,总放热量降低了17.0%,总烟气生成量降低了39.3%,在木材表面形成的炭层更加完整。 相似文献
14.
氨基树脂型膨胀阻燃剂处理软质聚氨酯泡沫塑料的阻燃性能 总被引:2,自引:0,他引:2
首先合成了两种氨基树脂型膨胀阻燃剂(简称FR)并应用于软质聚氨酯泡沫塑料(简称SPUF),所得阻燃SPUF采用热重分析、锥形量热仪研究其热解、阻燃性能,并用Kissinger方程计算SPUF的动力学参数热解活化能的变化,结果发现,阻燃SPUF的热量释放、烟气、CO和CO2排放大大降低,剩炭率增加,添加质量分数30%的阻燃剂可使材料氧指数(LOI)达27左右,有较好的阻燃效果,并根据其对力学性能的影响选出了适宜的SPUF阻燃剂。阻燃SPUF热解活化能降低~50 kJ/mol,表明阻燃剂对SPUF的热解具有催化成炭作用。 相似文献
15.
为了改善热塑性聚氨酯的阻燃性能,并尽量减小阻燃剂对其力学强度的影响,本文以三氯氧磷、季戊四醇(PER)、硫氰酸钾(KSCN)和1,3-丙二胺为原料合成了一种螺环状膨胀型高分子阻燃剂ISPDP,并采用核磁共振氢谱、红外光谱和凝胶渗透色谱对其结构进行了表征。热失重分析表明,ISPDP对热塑性聚氨酯具有明显促进成炭的作用。通过极限氧指数(LOI)和垂直燃烧(UL-94)对阻燃热塑性聚氨酯(ISPDPTPUs)体系进行燃烧测试,结果表明随着ISPDP添加量的增加,LOI增长显著,当达到最佳添加量15%时,LOI可以达到33,垂直燃烧等级为UL-94 V-0。扫描电镜对ISPDPTPUs燃烧后炭层表面研究结果显示,随着ISPDP添加量的增大,炭层表面变得更加致密。力学性能测试结果显示,ISPDP最优添加量15%时其拉伸强度略有增加,弹性模量大幅度增强,断裂伸长率仍可保持65%。 相似文献
16.
以亚磷酸二甲酯、二乙胺、正丁胺、环己胺为原料合成3种磷酰胺类阻燃剂二甲基-N,N-二乙基磷酰胺(DMDEPR)、二甲基-N-丁基膦酰胺(DMBPR)和二甲基-N-环己基磷酰胺(DMCHPR),用红外光谱仪、核磁共振仪、质谱仪和热重分析仪对其进行表征并研究了3种不同结构的磷酰胺类阻燃剂对硬质聚氨酯泡沫塑料(RPUF)阻燃性能的影响。结果表明,3种磷酰胺类阻燃剂和RPUF相容性较好,对RPUF力学性能影响不大。磷酰胺类阻燃剂的添加均使RPUF的阻燃性能有所提高,其中具有叔酰胺结构的DMDEPR阻燃效果最好,DMDEPR阻燃的RPUF热稳定性最高,添加10phr DMDEPR的RPUF其残炭量从空白RPUF的16.0%上升到25.2%。 相似文献
17.
以高熔指聚丙烯(HM-PP)粉料为基体,通过双螺杆挤出机将聚磷酸铵(APP)、三嗪成炭发泡剂(CFA)和纳米二氧化硅(Si O2)与聚丙烯进行捏合,经挤出、冷却及切粒后,制备三嗪膨胀阻燃母粒,同时研究了膨胀阻燃剂与聚丙烯基体的不同质量比对母粒加工性能的影响。将制备的阻燃母粒以一定的添加量与聚丙烯(M02)混合后直接注塑,制备阻燃聚丙烯材料,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了材料的阻燃性能,通过拉伸、弯曲和冲击性能的测试研究了材料的力学性能,通过扫描电镜对材料截面的测试研究了阻燃剂在材料中的分散性及相容性,同时还研究了阻燃PP材料的耐水性能。结果表明,在阻燃剂添加量为65%的时候,阻燃母粒具有很好的加工性能,加工过程中无断条现象。当母粒的添加量为33.8%(阻燃剂含量为22%)时,材料通过UL-94 V-0级,LOI值达到了34.3%,表现出很好的阻燃效果。与单独添加膨胀阻燃剂的阻燃PP材料相比,阻燃母粒与聚丙烯树脂具有更好的相容性且在树脂中分散均匀,阻燃母粒的加入提高了材料的力学性能,同时材料的耐水性能也得到了很好的提高,材料在耐水测试后依然能保持很好的阻燃性能。 相似文献
18.
含硅阻燃剂与膨胀型阻燃剂的协同阻燃性 总被引:7,自引:0,他引:7
采用测量极限氧指数(LOI)和锥形量热仪动态燃烧两种方法评价了含硅阻燃剂(SFR-H)与高聚磷酸铵/三聚氰胺氰尿酸盐(APP/MCA)膨胀阻燃体系在聚乙烯基体中的协同阻燃性,并通过红外光谱(FT-IR)、X射线衍射(WAXD)和扫描电镜(SEM)分析炭层结构和成分来研究其协同阻燃机理。研究表明,SFR-H/APP/MCA协同阻燃体系可明显提高聚乙烯的LOI值和降低燃烧热释放速率,具有较好的协同阻燃性,两者在燃烧过程中一起热氧化分解,形成陶瓷状含硅、硼、磷元素的化合物,对表面膨胀炭层起着增强作用,同时也提高了膨胀炭层的热氧稳定性和阻隔性能,从而提高了阻燃效果。 相似文献