首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以粘贴压电自感作动器的悬臂梁为研究对象,推导了悬臂梁振动主动控制的压电元传感方程和作动方程的传递函数,给出了压电自感作动器位置配置优化方法,设计了硬件电路以及软件流程.试验结果表明,利用压电自感作动器和模糊自适应控制器可有效地抑制悬臂梁振动.  相似文献   

2.
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip‐sample separations, and for different tip‐sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer‐generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. Microsc. Res. Tech. 78:935–946, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Transient dynamics of tapping mode atomic force microscope (AFM) for critical dimension measurement are analyzed. A simplified nonlinear model of AFM is presented to describe the forced vibration of the micro cantilever-tip system with consideration of both contact and non-contact transient behavior for critical dimension measurement. The governing motion equations of the AFM cantilever system are derived from the developed model. Based on the established dynamic model, motion state of the AFM cantilever system is calculated utilizing the method of averaging with the form of slow flow equations. Further analytical solutions are obtained to reveal the effects of critical parameters on the system dynamic performance. In addition, features of dynamic response of tapping mode AFM in critical dimension measurement are studied, where the effects of equivalent contact stiffness, quality factor and resonance frequency of cantilever on the system dynamic behavior are investigated. Contact behavior between the tip and sample is also analyzed and the frequency drift in contact phase is further explored. Influence of the interaction between the tip and sample on the subsequent non-contact phase is studied with regard to different parameters. The dependence of the minimum amplitude of tip displacement and maximum phase difference on the equivalent contact stiffness, quality factor and resonance frequency are investigated. This study brings further insights into the dynamic characteristics of tapping mode AFM for critical dimension measurement, and thus provides guidelines for the high fidelity tapping mode AFM scanning.  相似文献   

4.
A non‐optical bimorph‐based tapping‐mode force sensing method for tip–sample distance control in scanning near‐field optical microscopy is developed. Tapping‐mode force sensing is accomplished by use of a suitable piezoelectric bimorph cantilever, attaching an optical fibre tip to the extremity of the cantilever free end and fixing the guiding portion of the fibre to a stationary part near the tip to decouple it from the cantilever. This method is mainly characterized by the use of a bimorph, which carries out simultaneous excitation and detection of mechanical vibration at its resonance frequency owing to piezoelectric and anti‐piezoelectric effects, resulting in simplicity, compactness, ease of implementation and lack of parasitic optical background. In conjugation with a commercially available SPM controller, tapping‐mode images of various samples, such as gratings, human breast adenocarcinoma cells, red blood cells and a close‐packed layer of 220‐nm polystyrene spheres, have been obtained. Furthermore, topographic and near‐field optical images of a layer of polystyrene spheres have also been taken simultaneously. The results suggest that the tapping‐mode set‐up described here is reliable and sensitive, and shows promise for biological applications.  相似文献   

5.
A newly developed Si self-sensing piezoresistive cantilever is presented. Si piezoresistive cantilevers for scanning microscopy are fabricated by Si micro-machining technique. The sensitivity of the piezoresistive cantilever is comparable to the current laser detecting system. Topographic images are successfully obtained with the piezoresistive cantilever and some comparisons are made with the laser detecting system. Furthermore, the magnetic film (Co-Cr-Pt) is coated on the tip of the piezoresistive cantilever for magnetic force microscopy (MFM) application. The magnetic images are successfully obtained with the self-sensing MFM piezoresistive cantilever. The self-sensing piezoresistive cantilevers have been successfully applied in scanning probe microscopy and MFM.  相似文献   

6.
Huang L  Su C 《Ultramicroscopy》2004,100(3-4):277-285
Changing the method of tip/sample interaction leads to contact, tapping and other dynamic imaging modes in atomic force microscopy (AFM) feedback controls. A common characteristic of these feedback controls is that the primary control signals are based on flexural deflection of the cantilever probes, statically or dynamically. We introduce a new AFM mode using the torsional resonance amplitude (or phase) to control the feedback loop and maintain the tip/surface relative position through lateral interaction. The torsional resonance mode (TRmode™) provides complementary information to tapping mode for surface imaging and studies. The nature of tip/surface interaction of the TRmode facilitates phase measurements to resolve the in-plane anisotropy of materials as well as measurements of dynamic friction at nanometer scale. TRmode can image surfaces interleaved with TappingMode™ with the same probe and in the same area. In this way we are able to probe samples dynamically in both vertical and lateral dimensions with high sensitivity to local mechanical and tribological properties. The benefit of TRmode has been proven in studies of water adsorption on HOPG surface steps. TR phase data yields approximately 20 times stronger contrast than tapping phase at step edges, revealing detailed structures that cannot be resolved in tapping mode imaging. The effect of sample rotation relative to the torsional oscillation axis of the cantilever on TR phase contrast has been observed. Tip wear studies of TRmode demonstrated that the interaction forces between tip and sample could be controlled for minimum tip damage by the feedback loop.  相似文献   

7.
研制了不需要外部附加微位移与微力传感器、采用自感知方法来获取压电微夹钳的钳指位移与夹持力的压电自感知微夹钳。根据压电陶瓷晶片在驱动电压与外力作用下发生变形会在其表面产生电荷的思想,提出了基于积分电荷的钳指位移与夹持力的自感知方法;基于Jan G.Smits的压电悬臂梁弯曲变形理论,给出了钳指位移与夹持力的自感知表达式,即用钳指上压电陶瓷晶片表面的电荷来表达钳指位移与夹持力。设计了获取晶片表面电荷的积分电路,给出了其平衡条件为晶片电容与其绝缘电阻之积同积分电容与反馈电阻之积相等。自感知验证实验结果表明:修正后在31.59μm最大钳指位移范围内的自感知位移最大偏差为0.78μm;在35.91mN最大钳指夹持力范围内的自感知夹持力的最大偏差为0.24mN。实验结果验证了所提自感知方法是有效的。  相似文献   

8.
Enlightened by the principle of scanning probe microscopy or atomic force microscope (AFM), we proposed a novel surface topography imaging system based on the scanning of a piezoelectric unimorph cantilever. The height of sample surface can be obtained by recording the cantilever's strain using an ultra‐sensitive strain gauge and the Z‐axis movement is realized by electric bending of the cantilever. This system can be operated in the way similar to the contact mode in AFM, with the practical height detection resolution better than 100 nm. Imaging of the inner surface of a steel tube and on a transparent wing of a honey bee were conducted and the obtained results showed that this proposed system is a very promising solution for in situ topography mapping. Microsc. Res. Tech. 77:749–753, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
A cantilever has been microfabricated for use in non-contact Atomic Force Microscopy (AFM) using a very thick magnetic film to actuate the cantilever motion. The thick magnetic block is deposited electrochemically over a defined area of the cantilever. This cantilever is particularly suitable for driving stiff AFM cantilevers in a liquid environment. Clean mechanical resonances are easily observed. Examples are given of a hard (CoPt) magnet of dimension 29 × 21 × 6 μm(3) electroplated on Silicon cantilevers of stiffness ~22 N/m, giving a static displacement of ~0.2 nm in an applied field of 10(-3) T.  相似文献   

10.
由于传统的自感知电桥电路难以有效地实现自感知执行器传感与执行之间的信号分离,因此,提出了一种采用神经网络分离出压电自感知执行器传感信号的新方法,用神经网络直接估算结构的振动速度来得到振动控制时控制器的反馈信号.将嵌入在复合材料悬臂梁中的压电陶瓷片作为自感知执行器,采用基于Filter-X LMS算法的自适应滤波控制器对悬臂梁的振动进行主动控制.结果表明神经网络估算得到的振动速度和用传感器直接测得的完全吻合,将神经网络的输出作为控制器的反馈信号可以取得理想的减振效果.  相似文献   

11.
There is a growing trend towards miniaturization, and with it comes an increasing need for miniature sensors and actuators for control. Moreover situations occur wherein implementation of external physical sensor is impossible, here self-sensing lends its hand appropriately. Though self-sensing actuation (SSA) is extensively studied in piezoelectric, exploring this property in shape memory alloy is still under study. A simple scheme is developed which allows differential resistance measurement of antagonistic shape memory alloy actuated wires to concurrently sense and actuate in a closed loop system. The usefulness of the proposed scheme is experimentally verified by designing a one link manipulator arm and is performed in a real time tracking control. In a practical implementation of the self-sensing actuator a newly proposed signal processing electronic circuit is used for direct differential resistance feedback control upto a bandwidth of 1.8 Hz. The control design uses fuzzy PID which requires no detailed information about the constitutive model of SMA. At an operating frequency of 1 Hz, the result of the self-sensing feedback control with an angular tracking accuracy of ±0.06° over a movement range of ±15° is demonstrated.  相似文献   

12.
Iwasiewicz-Wabnig A  Shin JH  Xiao S  Edman L 《Ultramicroscopy》2007,107(10-11):1078-1085
A common method for characterizing the phase separation of materials in mixtures is tapping mode atomic force microscopy (AFM). However, AFM results are influenced by surface-energy effects and the employed tapping force, and it might therefore be difficult to attain correct information regarding the bulk with such a surface-imaging technique. In this work, we present a way of imaging material phase separation in an improved manner by recording a series of AFM images at different tapping force. More specifically, we have employed the variable-force AFM method on organic mixtures, comprising a conjugated polymer (MEH-PPV) and an ion-conducting polymer electrolyte (PEO-XCF(3)SO(3), X=Li, K, Rb), and we demonstrate that it is capable of reversibly sampling such materials not only on the surface, but also (indirectly) in the topmost part of the bulk. The analysis of the evolution of AFM phase images allows us to (indirectly) gain information about the bulk-phase separation of materials. We find that the variable-force AFM results correlate well with the device performance of light-emitting electrochemical cells employing such organic mixtures as the active material.  相似文献   

13.
Song Y  Bhushan B 《Ultramicroscopy》2007,107(10-11):1095-1104
Investigation of morphology and mechanical properties of biological specimens using atomic force microscopy (AFM) often requires its operation in liquid environment. Due to the hydrodynamic force, the vibration of AFM cantilevers in liquid shows dramatically different dynamic characteristics from that in air. A good understanding of the dynamics of AFM cantilevers vibrating in liquid is needed for the interpretation of scanning images, selection of AFM operating conditions, and evaluation of sample's mechanical properties. In this study, a finite element (FE) model is used for frequency and transient response analysis of AFM cantilevers in tapping mode (TM) operated in air or liquid. Hydrodynamic force exerted by the fluid on AFM cantilevers is approximated by additional mass and hydrodynamic damping. The additional mass and hydrodynamic damping matrices corresponding to beam elements are derived. With this model, numerical simulations are performed for an AFM cantilever to obtain the frequency and transient responses of the cantilever in air and liquid. The comparison between our simulated results and the experimentally obtained ones shows good agreement. Based on the simulations, different characteristics of cantilever dynamics in air and liquid are discussed.  相似文献   

14.
A phase shift between the oscillatory motion and drive motion of an AFM-cantilever used for tapping mode AFM imaging can be related to adhesive and elastic properties of surface layers. In this study it was studied how optimal contrast between hard and soft surface layers can be achieved while minimizing the surface damage. This was investigated by performing classical force-distance measurements while driving the cantilever as in tapping mode imaging. The amplitude and phase response as a function of the average tip-surface separation was recorded. Five different cantilevers with a wide range of spring constants and four different tapping amplitudes were investigated and compared. Based on these experiments it is concluded that too stiff cantilever, high free tapping amplitude and low amplitude set point value often lead to surface damage, while too low spring constant and low free tapping amplitude result in poor phase image contrast. Intermediate values where little surface damage and significant image contrast are obtained were identified. In all cases it was observed that the best image contrast was obtained when the amplitude set point was chosen such that the amplitude during imaging was reduced to approximately 50% of the free amplitude.  相似文献   

15.
An improved technique for obtaining tapping mode scanning force microscopy (TMSFM) images of soft samples submerged in water is described. This technique makes use of a carbon nanotube several microns in length mounted on a conventional silicon cantilever as the TMSFM probe. The sample is covered by a shallow water layer and during imaging only a portion of the nanotube is submerged. This mode of operation largely eliminates the undesirable effects of hydrodynamic damping and acoustic excitation that are present during conventional tapping mode operation in liquids and leads to high-quality TMSFM images. Because of their low bending force constants, carbon nanotubes are ideal for gentle imaging of soft samples. Because of their small (5–20 nm) diameter and cylindrical shape they provide excellent lateral resolution and are ideal for scanning high aspect ratio objects.  相似文献   

16.
Ge G  Han D  Lin D  Chu W  Sun Y  Jiang L  Ma W  Wang C 《Ultramicroscopy》2007,107(4-5):299-307
Magnetic AC mode (MAC mode) atomic force microscopy (AFM), a novel type of tapping mode AFM in which the cantilever is driven directly by a magnetic field, is a powerful tool for imaging with high spatial resolution and better signal-to-noise in liquid environment. It may largely extend the application of AFM to living samples, especially those are sensitive to cantilever forces, even to multilayer tissue samples. However, there are few reports on the imaging of living cells by MAC mode AFM previously. In our present study, we explore the optimal imaging conditions of MAC mode AFM on living astrocytes and fresh arterial intima surface. We also used nude tips for PicoTREC panel (i.e., Aux in BNC, a new data collecting channel) to image living samples and discussed its difference with phase imaging. We show that living biological samples can be imaged by MAC mode AFM at details of comparable resolution as those by high resolution scanning electron microscopy. Furthermore, the combination of height, amplitude, phase and TREC panel signals provide abundant informations for the characteristics of living samples, such as topography, profile, stiffness and adhesion.  相似文献   

17.
Successful imaging of living human cells using atomic force microscopy (AFM) is influenced by many variables including cell culture conditions, cell morphology, surface topography, scan parameters, and cantilever choice. In this study, these variables were investigated while imaging two morphologically distinct human cell lines, namely LL24 (fibroblasts) and NCI H727 (epithelial) cells. The cell types used in this study were found to require different parameter settings to produce images showing the greatest detail. In contact mode, optimal loading forces ranged between 2-2.8 x 10(-9) and 0.1-0.7 x 10(-9) (N) for LL24 and NCI H727 cells respectively. In tapping (AC) mode, images of LL24 cells were obtained using cantilevers with a spring constant of at least 0.32 N/m, while NCI H727 cells required a greater spring constant of at least 0.58 N/m. To obtain tapping mode images, cantilevers needed to be tuned to resonate at higher frequencies than their resonance frequencies to obtain images. For NCI H727 cells, contact mode imaging produced the clearest images. For LL24 cells, contact and tapping mode AFM produced images of comparable quality. Overall, this study shows that cells with different morphologies and surface topography require different scanning approaches and optimal conditions must be determined empirically to achieve images of high quality.  相似文献   

18.
This article describes tapping mode atomic force microscopy (AFM) using a heated AFM cantilever. The electrical and thermal responses of the cantilever were investigated while the cantilever oscillated in free space or was in intermittent contact with a surface. The cantilever oscillates at its mechanical resonant frequency, 70.36 kHz, which is much faster than its thermal time constant of 300 micros, and so the cantilever operates in thermal steady state. The thermal impedance between the cantilever heater and the sample was measured through the cantilever temperature signal. Topographical imaging was performed on silicon calibration gratings of height 20 and 100 nm. The obtained topography sensitivity is as high as 200 microVnm and the resolution is as good as 0.5 nmHz(1/2), depending on the cantilever power. The cantilever heating power ranges 0-7 mW, which corresponds to a temperature range of 25-700 degrees C. The imaging was performed entirely using the cantilever thermal signal and no laser or other optics was required. As in conventional AFM, the tapping mode operation demonstrated here can suppress imaging artifacts and enable imaging of soft samples.  相似文献   

19.
光杠杆法是原子力显微镜(AFM)悬臂定位的主要方法。由于悬臂自身的尺寸和材料特性、检测光路系统等因素制约,悬臂弯曲测量时存在光泄露。被试样表面反射的部分泄露光与悬臂反射光产生干涉,在探针一试样接近曲线中产生光干涉误差。基于轻触模式AFM,分析了光干涉误差的产生原因,并对其引起的AFM测量误差进行了数学分析和仿真、提出了减小光干涉误差的方法。实验结果和理论分析表明,为了进一步提高AFM的测量精度,有必要克服定位系统中的光干涉误差。  相似文献   

20.
一种新颖的点衍射干涉轻敲模式原子力显微镜   总被引:1,自引:0,他引:1  
论述了一种新颖的原子力显微镜,它利用硅微探针的特殊结构和相关光学系统所引起的点衍射干涉现象[1]来扫描成像,因为硅微探针被用作反射型点衍射板,故光路完全共路,再结合锁相检测技术,使得该仪器抗干扰力极强且结构精巧紧凑,可适用于测试软硬不同材料样品,对软质高分子膜材料检测得到了实际的链状结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号