首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This study focuses on understanding the fundamentals of energy transfer and electron transport in photovoltaic devices with uniquely designed nanostructures by analysing energy transfer in purple photosynthetic bacteria using dye-sensitised solar cell systems. Förster resonance energy transfer between the xanthene dye (donor of energy) and a new polymethine dye (acceptor of energy) was studied in dye-sensitised solar cells, which leads to a doubling of energy conversion efficiency in comparison to the cell with only the polymethine dye. The electron transport in the two different nanostructures of zinc oxide (nanorods and nanosheets) was investigated by spectroscopic methods (UV-vis spectrometer, time-resolved photoluminescence spectroscopy) and electrochemical potentiostat methods. The nanosheet structure of zinc oxide showed high short circuit current and long diffusion length. This fundamental study will lead to efficient artificial photosystem designs.  相似文献   

2.
A microwave-assisted solution-phase approach has been applied for the synthesis of zinc oxide nanostructures. The synthesis procedure was carried out by using two reagents: hydrazine hydrate and ammonia. Flower shaped particles were obtained with hydrazine hydrate whereas mainly spherical agglomerated particles were observed with ammonia. The nanostructures were influenced by microwave irradiation time, reagent concentration and molar ratio of the precursors. High crystalline materials were found without the need of a post-synthesis treatment. The average crystalline size of ZnO nanostructures has been analyzed by X-ray Diffraction (XRD) pattern and estimated to be 18 nm. The presence of flower shaped zinc oxide with nanorods arranged has been confirmed from Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) micrographs. The samples were further analyzed by Fourier Transform InfraRed (FT-IR), Thermogravimetric Analysis (TGA) and photoluminescence spectroscopic techniques.  相似文献   

3.
Seed mediated aqueous chemical growth (ACG) route was used for the growth of ZnO nanostructures on Si substrate in four different growth mediums. The growth medium has shown to affect the morphology and the size of the different nanostructures. We observed that the medium containing zinc nitrate anions yields the nanorods, in a medium containing zinc acetate anions nano-candles are obtained. While in a medium containing zinc chloride anions ZnO nano-discs were obtained and in a medium containing zinc sulfate anions nano-flakes are achieved. Growth in these different mediums has also shown effect on the optical emission characteristics of the different ZnO nanostructures.  相似文献   

4.
A simple aqueous solution route has been successfully employed to prepare large-scale arrays of ZnO nanorods on the zinc foil without the assistance of any template, oxidant or coating of metal oxide layers. It is found that the growth of ZnO nanorod arrays with different densities, diameters and morphologies is dependent on the ammonia concentration and zinc precursor. The different morphologies of the ZnO nanostructures attained with or without adding Zn2+-contained salt in the alkaline solution are compared in the paper. The possible growth mechanism concerning the growth of the different ZnO nanocrystal morphologies is also discussed.  相似文献   

5.
In the present work, ZnO nanostructures were synthesized by monoethanolamine (MEA)-assisted ultrasonic method at low temperature. Structural analysis was carried out by X-ray diffraction (XRD) confirmed the formation of hexagonal wurtzite structure of ZnO. The effect of ammonia water on the molecular structure of MEA, and its effect on the morphology of ZnO nanostructures were monitored by electron microscopy. Scanning electron microscopy (SEM) results suggest that ZnO nanoparticles with 100 nm in diameter were produced in case of MEA-assisted ultrasonic method. However, as ammonia water was added into the reaction system the morphology of ZnO nanoparticles changed into nanorods, flower-like nanostructures and finally microrods. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies showed that as prepared ZnO nanostructures were single crystalline in nature and grew in different directions resulted in the formation of various structures. The growth mechanism of as prepared ZnO nanostructures was discussed in detail. It was proposed that the addition of ammonia water into the reaction system resulted into the formation of ethylene diamine (EDA) which directed the growth of ZnO. The optical property was studied by photoluminescence (PL) spectroscopy showed only UV emission and no defects mediated visible emission.  相似文献   

6.
In this study, we fabricated ZnO nanostructures using bamboo fibers as templates. The starting material used was zinc acetate, and the nanostructures were synthesized by soaking and calcining the bamboo fibers. The fabricated nanostructures were characterized using X-ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM), and ultraviolet-visible spectrophotometry. The results showed that the size of the ZnO nanoparticles was approximately 20–100 nm. When the ZnO nanoparticles were used as the catalyst in the photodegradation of methyl orange, the dye degraded by 95.98 % in 80 min. The response and recovery times of a gas sensor based on the ZnO nanoparticles were 25 and 24 s, respectively, during the detection of C2H5OH in a concentration of 10 ppm at 270 °C.  相似文献   

7.
The optimal carbon nanotube (CNT) bundles with a hexagonal arrangement were synthesized using thermal chemical vapor deposition (TCVD). To enhance the electron field emission characteristics of the pristine CNTs, the zinc oxide (ZnO) nanostructures coated on CNT bundles using another TCVD technique. Transmission electron microscopy (TEM) images showed that the ZnO nanostructures were grown onto the CNT surface uniformly, and the surface morphology of ZnO nanostructures varied with the distance between the CNT bundle and the zinc acetate. The results of field emissions showed that the ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. The enhancement of field emission characteristics was attributed to the increase of emission sites formed by the nanostructures of ZnO grown onto the CNT surface, and each ZnO nanostructure could be regarded as an individual field emission site. In addition, ZnO-coated CNT bundles exhibited a good emission uniformity and stable current density. These results demonstrated that ZnO-coated CNTs is a promising field emitter material.  相似文献   

8.
This work reports the immobilization of zinc oxide (ZnO) nanostructures and gold nanoparticles (AuNPs) on cotton fabrics (CFs). The ZnO and AuNPs containing CF composite materials demonstrated excellent photocatalytic activity towards degradation of the model organic dye molecule. A two-step method was used to first create zinc oxide nanorods (ZnONRs) on the CF fibers. Subsequently, these ZnONRs were decorated with cationic polymer-capped AuNPs to yield the composite materials. A one-pot synthetic route was developed to synthesize polymer-capped AuNPs. The water-soluble cationic polymers used here are polyguanidino oxanorbornenes (PGONs) at 20 kDa and polyamino oxanorbornenes (PAONs) at 20 kDa. UV–vis was utilized to monitor the composite materials’ photocatalytic activity in degrading model organic dye molecules. All the materials were characterized by FTIR, UV–visible DRS, SEM, EDX, and XRD. The composite materials exhibited excellent photocatalytic activity and recyclability in the presence of UV light.  相似文献   

9.
采用常压水热法制备了具有系列多界面结构的氧化锌,并对样品的晶体结构、微观形貌和电磁波损耗特性做了研究。通过扫描电子显微镜(SEM)研究了不同反应条件对氧化锌纳米结构形貌的影响,发现改变锌盐种类和氢氧化钠浓度能够得到不同形貌的氧化锌纳米多界面结构;动力学研究结果表明,不同锌盐制备氧化锌的成核速率几乎相等,晶体生长阶段的速率却存在明显的差异,由此提出基于极性晶面阴离子吸附的纳米氧化锌低维结构生长机理。电磁波损耗特性的初步研究结果表明,纳米界面结构的形貌对其电磁波损耗性能有显著影响。  相似文献   

10.
The effect of the microwave power on the morphology and optical properties of zinc oxide nanostructures prepared using a microwave-assisted aqueous solution method has been investigated. The ZnO nanostructures were synthesized from zinc chloride and sodium hydroxide mixed aqueous solutions exposed for 5 min to microwave radiation at four different powers, namely 150, 450, 700 and 1000 W. The morphologies of the samples have been characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results showed that the power of microwave radiation influenced the shape and size of the synthesized nanostructures. It is also found that the average particle size of nanostructures decreased with decreasing microwave power. The results of X-ray diffraction (XRD) showed that all the as-prepared ZnO nanostructures are in crystalline form with high purity. The infrared (IR) spectra indicated that the as-prepared nano ZnO product can be used as infrared gas sensors such as an infrared carbon dioxide (CO2) and/or CO sensor. Optical properties of the as-prepared ZnO nanostructures were investigated by UV–vis spectroscopy and showed that the optical properties of as-synthesized ZnO samples are sensitive to the variation of the power of microwave radiation.  相似文献   

11.
A combination of two methods — laser modulation and 3ω — has been used to determine the heat capacity, heat conductivity, and heat diffusivity of zinc oxide nanostructures. A significant difference between the thermal parameters of zinc oxide nanostructures grown by different technological methods has been revealed. It has been shown that the relatively low heat conductivity and heat diffusivity values of oxide zinc nanostructures are due to both the internal defects and the contact resistance between the film and its base — the substrate.  相似文献   

12.
Plasmonic composites consisting of silver nanostructures and zinc oxide semiconductor have better photocatalytic performance than pure zinc oxide. To prepare the composites, nanostructures of zinc oxide particles, gold spheres, and three different silver morphology including cubes, spheres, and wires were synthesized. A detailed study of the main mechanisms governing the activity of plasmonic photocatalysts showed that the improvement of photocatalytic performance is attributed to localized surface plasmon resonance-mediated energy transfer from silver to zinc oxide. This mechanism, which is performed using non-radiative (near-field) and radiation (far-field) processes, led to an increase in the concentration of e?/h+ pairs near the semiconductor. We also showed that the increase of the photocatalytic activity depends on the shape of the silver nanostructures in the composites. Our theoretical and experimental studies have shown that composites containing silver cubes have the highest increase of photocatalytic activity compared to other morphologies. The percentage of photocatalytic degradation of methylene blue solution in presence of silver cubes was about 15% higher than that of other morphologies. Therefore, by controlling the shape of noble metal nanostructures, the photocatalytic activity of a semiconductor can be maximized and adjusted.  相似文献   

13.
Influence of vacuumization on the photoluminescence (PL) spectra and photoresponse decay of ZnO nanostructures fabricated by different methods was investigated. The visible band of photoluminescence and ultraviolet (UV) photosensitivity of the samples grown from a vapor phase was associated with the intrinsic defects such as doubly charged zinc vacancies, and for the samples grown by hydrothermal method – with presence of the oxygen vacancies. The experimental results show that ZnO nanostructures grown from the vapor phase would be promising for producing of the low cost and effective UV detecting devices.  相似文献   

14.
Presented is the growth of zinc oxide nanorod/nanowire arrays on gallium nitride epitaxial layers. A hierarchical zinc oxide morphology comprising of different scale zinc oxide nanostructures was observed. The first tier of the surface comprised of typical zinc oxide nanorods, with most bridging to adjacent nanorods. While the second tier comprised of smaller zinc oxide nanowires approximately 30 nm in width often growing atop the aforementioned bridges. Samples were analysed via scanning electron microscopy, as well as, cross-sectional and high resolution transmission electron microscopy to elucidate the detailed growth and structural elements of the heterostructure.  相似文献   

15.
An efficient method for the fabrication of zinc (Zn) nanostructures (nanoneedles and nanofibers) of controllable density and morphology without any catalyst, hazardous chemicals or external heat supply has been investigated. By varying the ion irradiation time and the ion current density, morphological control and the density of Zn nanostructures were successfully achieved using a fast and viable ion irradiation technique. Scanning (SEM) and transmission electron microscopy (TEM) results revealed that the sputtered surface was almost entirely covered with densely distributed conical and needle-like protrusions with linear shaped (sometimes curved) nanostructures (such as nanoneedles and nanofibers) with diameters and lengths of about 20-50 nm and several hundred nanometers, respectively. Detailed analysis of selected area electron diffraction (SAED) patterns with TEM analysis indicates that the Zn nanofibers were polycrystalline in nature. A possible mechanism of the formation of Zn nanostructures is briefly discussed. These aligned arrays of Zn nanoneedles/nanofibers could be a promising material for the fabrication of zinc oxide nanostructures by subsequent oxidation of Zn nanostructures and their future application in nanodevices. Thus, it is believed that this ion irradiation technique could open up a new approach for the fabrication of many kinds of nanomaterials of controllable density.  相似文献   

16.
《Materials Letters》2006,60(25-26):3122-3125
Various undoped/Cd-doped ZnO nanostructures have been synthesized through a simple evaporating method. The gold particles-filled anodic aluminum oxide templates and catalyst-free graphite sheet were used as substrates. The morphologies of the products can be controlled by simply tuning the evaporation temperature of zinc and gases flow rates. Moreover, morphological difference between the undoped and Cd-doped ZnO nanostructures is presented. These as-grown ZnO nanostructures could be nanowires, nanobelts, nanoneedles, nanocombs, and saw-like structures, wherein in the saw-like ZnO structure was firstly found to originate nanowires on its rough lateral side. Room-temperature photoluminescence measurement shows strong green emissions from the ZnO nanostructures.  相似文献   

17.
Zinc oxide (ZnO) multipod nanoneedles over a large area have been synthesized on silicon substrate by thermally oxidizing zinc foil at 650 °C. These nanoneedles have sharp tails with diameter down to less than 100 nm, with length of 10 μm, growing from the surface of the silicon substrate and legs connected at a common base. X-ray diffraction (XRD) confirmed the sample as pure ZnO nanostructures with growth direction of [002]. The cathode luminescence behaviors at different regions of an individual nanoneedle of these multipod ZnO nanostructures were characterized. It is shown the whole nanostructures are luminescent, while the tips have relative higher visible emission than the bottom. The cathode luminescence mechanisms were also discussed.  相似文献   

18.
Zn/ZnO metal/semiconductor nanostructures were successfully synthesised by a facile zinc-rich chemistry liquid-phase approach with zinc microspheres as sacrificial templates at ambient temperature. A series of globular Zn/ZnO core/shell structures and hollow microsphere architectures self-assembled by Zn/ZnO nanorod heterojunction arrays were obtained by controlling the amount of zinc particles. The structure, morphology, composition and optical properties of the products have been characterised by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and photoluminescent spectroscopy. A possible growth mechanism of the Zn/ZnO nanostructures has been proposed based on the structural analysis. The growth mechanism of Zn/ZnO hollow microspheres is ascribed to Kirkendall effect. A new strong blue emission at 440 nm and a green emission around 500 nm with an enhancement over one order of magnitude compared with the pure ZnO sample have been observed. These emission bands are attributed to two kinds of mechanisms that have been discussed in detail.  相似文献   

19.
纳米结构的ZnO由于具有优异的光、电、磁、声等性能,已经成为光电、化学、催化、压电等领域中聚焦的研究热点之一.不同纳米结构的ZnO其制备方法不同,着重概述了采用化学气相沉积(CVD)工艺制备ZnO纳米材料,包括直接热分解、高温加热锌粉、碳热还原法以及金属有机气相沉积(MOCVD)4种方法,重点讨论了不同锌源和氧源对ZnO纳米结构的影响规律,并初步探讨了ZnO的VLS与VS生长机理,同时展望了ZnO在各领域中的最新应用.  相似文献   

20.
利用分子氧和溴酸钾一步直接在溶液中氧化还原反应原位产生碱作为氧源来制备纳米结构ZnO。首先,在甲酰胺水溶液中,以锌箔作为锌源,在温和条件下分别合成了纳米棒/管构成的海蛰状ZnO。其次,在溴酸钾水溶液,以锌箔作为锌源,在近室温下合成了纺锤形ZnO。该方法具有反应条件温和,反应参数连续可调节,一步湿法直接合成的ZnO具有新颖微/纳米结构等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号