首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lobeline is currently being developed as a substitution therapy for tobacco smoking cessation. Activation of CNS dopamine (DA) systems results in the reinforcing properties of nicotine. The present study compared the effects of lobeline and nicotine on rat striatum. Both lobeline and nicotine evoked [3H]overflow from striatal slices superfused in the presence of pargyline and nomifensine in the buffer. Marked DA depletion (42-67%) and a concomitant 2-fold increase in dihydroxyphenylacetic acid (DOPAC) in slices superfused with high concentrations (30-100 microM) of lobeline were observed. The effect of nicotine (10 microM) was inhibited in a concentration-dependent manner by mecamylamine (1-100 microM). However, lobeline (0.1-100 microM)-evoked [3H]overflow was calcium-independent, and was not antagonized by mecamylamine (1-100 microM), suggesting a mechanism of action other than stimulation of nicotinic receptors. Lobeline inhibited [3H]DA uptake into synaptosomes (IC50 = 80 +/- 12 microM) and vesicles (IC50 = 0.88 +/- 0.001 microM), whereas nicotine (< or =100 microM) did not inhibit synaptosomal or vesicular [3H]DA uptake. In the absence of pargyline and nomifensine in the buffer, endogenous DA was detected in superfusate only in those slices exposed to the highest concentration (100 microM) of lobeline. However, endogenous DOPAC concentration was increased in a concentration-dependent manner, indicating that lobeline exposure resulted in increased cytosolic DA which was rapidly metabolized to DOPAC. Under these conditions, lobeline (10-100 microM) also significantly depleted (66-85%) DA content; however, no change in DOPAC content was observed. The results suggest that, unlike nicotine, lobeline increases DA release by potent inhibition of DA uptake into synaptic vesicles, and a subsequent alteration in presynaptic DA storage.  相似文献   

2.
The catecholamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is used to augment striatal dopamine (DA), although its mechanism of altering neurotransmission is not well understood. We observed the effects of L-DOPA on catecholamine release in ventral midbrain neuron and PC12 pheochromocytoma cell line cultures. In ventral midbrain neuron cultures exposed to 40 mM potassium-containing media, L-DOPA (100 microM for 1 h) increased DA release by > 10-fold. The elevated extracellular DA levels were not significantly blocked by the DA/norepinephrine transport inhibitor nomifensine, demonstrating that reverse transport through catecholamine-uptake carriers plays little role in this release. In PC12 cells, where DA release from individual secretory vesicles can be observed, L-DOPA (50 microM for 1 h) elevated DA release in high-potassium media by 370%. Amperometric measurements demonstrated that L-DOPA (50 microM for 40-70 min) did not raise the frequency of vesicular exocytosis but increased the average size of quantal release to at least 250% of control levels. Together, these findings suggest that L-DOPA can increase stimulation-dependent transmitter release from DA cells by augmenting cytosolic neurotransmitter, leading to increased quantal size.  相似文献   

3.
In vivo microdialysis was used to investigate the mechanism behind the increase in extracellular dopamine (DA) induced by increase in extracellular serotonin (5-HT) level and 5-HT1 and 5-HT2 receptor activation. The following serotoninergic drugs were perfused in the absence or presence of nomifensine (5 microM) or tetrodotoxin (TTX; 2 microM): clomipramine (10, 500 and 1,000 microM), a selective 5-HT reuptake inhibitor; 8-OH-DPAT (50 and 500 microM), a 5-HT1A receptor agonist; and alpha-methyl-5-HT (1, 5 and 50 microM), a 5-HT2 receptor agonist. All the serotoninergic drugs studied increased DA extracellular output in a dose-dependent manner. The presence of nomifensine attenuated the effect of perfusion of clomipramine (500 microM) and completely abolished the effect of perfusion of 8-OH-DPAT (500 microM) and alpha-methyl-5-HT (5 microM) on DA extracellular output. Clomipramine (100-1,000 microM) perfusion produced a dose dependent increase in DOPAC extracellular output, which was stronger when clomipramine (500 microM) was co-perfused with nomifensine. 8-OH-DPAT and alpha-methyl-5-HT perfusion decreased DOPAC overflow. Addition of TTX to the perfusion fluid one hour before serotoninergic drugs perfusion, did not completely abolish the effect on dopamine extracellular output produced by the serotoninergic drugs. These data seem to indicate that increase in extracellular 5-HT level and 5-HT1 and 5-HT2 receptor activation increase in vivo DA extracellular output in the striatum mainly by a nonexocytotic mechanism involving DA uptake sites and, secondarily, by activation of 5-HT receptors.  相似文献   

4.
In vivo voltammetry was used to measure the clearance to exogenously applied dopamine (DA) in the nucleus accumbens following acute systemic nicotine administration in urethane-anesthetized rats. The IVEC-5 system was used for continuous in vivo electrochemical measurements. A finite amount of DA was pressure-ejected (25-100 nl, 200 microM barrel concentration) at 5-min intervals from micropipettes (tip diameter, 10-15 microns) positioned 250 +/- 50 microns from the recording electrode. The peak DA concentration after each DA ejection was significantly decreased in rats following nicotine, but not in rats given saline. In addition, when mecamylamine was administered 20 min before nicotine it clearly antagonized nicotine effects. These results suggest that nicotine may actually facilitate DA transporter systems within the nucleus accumbens.  相似文献   

5.
Chronic hypoxia in vivo promotes long-term changes in the carotid body (CB) response to low PO2. By exposing cultured rat CB chemoreceptors (glomus cells) to 6% O2 for 1-3 weeks, we are investigating the cellular and molecular mechanisms of hypoxic adaptation. Recent studies have uncovered a series of plastic changes in glomus cells including hypertrophy, differential regulation of Na+, Ca2+, and K+ currents, and upregulation of the 'plasticity protein', GAP-43. We have also identified cyclic AMP as a possible intracellular mediator of at least some of these effects of chronic hypoxia. Associated with the changes in ionic currents, glomus cells become electrically more excitable. However, a complete understanding of the physiological response of chronically hypoxic glomus cells to chemostimuli will require more detailed knowledge of the specific alterations in the sensing and signaling pathways, including modifications in neurotransmitter (e.g. catecholamine) functions.  相似文献   

6.
PURPOSE: This study was conducted to detect the presence of muscarinic or nicotinic receptors in cultured retinal neurons and Müller cells. METHODS: Pure Müller cell cultures and cocultures of retinal neurons and Müller cells were used; the former, obtained from adult rabbit retinas, and the latter, retinal neurons from neonatal rats, were cocultured with Müller cells. Intracellular calcium ion concentration ([Ca2+]i) following the administration of acetylcholine, a cholinesterase inhibitor (trichlorfon), nicotine or muscarinic agonist with or without a receptor antagonist was monitored using the calcium ion indicator, fura-2. RESULTS: Acetylcholine and trichlorfon induced rapid increase in [Ca2+]i in half of either cell type. Trichlorfon induced positive response in coculture but not in the pure Müller cell cultures. This positive response was blocked only partially in the presence of atropine. Approximately 30-40% of neurons responded to nicotine at 5 microM, which was significantly blocked by alpha-bungarotoxin at 50 nM. No response to nicotine could be detected in Müller cells. Approximately 50% of neurons responded to muscarine at 50 microM, but 500 microM was required for the formation of calcium transients in 50% of Müller cells. The muscarine inducement of rapid increase in [Ca2+]i was blocked by atropine. The agonist of M1 (a muscarinic receptor subtype), McN-A-343, at 0.5 microM induced the most significant and rapid increase in [Ca2+]i both in neurons and Müller cells. McN-A-343 administration at 0.05 microM induced positive response in half the neurons, but only in approximately 10% of Müller cells. Such positive response was not observed following preincubation with the M1 antagonist, pirenzepine, at 50 microM. CONCLUSIONS: Cocultured retinal neurons enhance the release of acetylcholine following anticholinesterase administration, and approximately half the neurons were found to possess muscarinic and nicotinic receptors. However, Müller cells appeared to possess only the less sensitive muscarinic receptor. Muscarinic receptor subtypes on either type of cell contained at least M1.  相似文献   

7.
Acting as a substrate at the serotonin (5-HT) transporter, (+)-MDMA (3,4-methylenedioxymethamphetamine), is a potent releaser of 5-HT and causes toxicity to 5-HT neurons after repeated exposure. (+)-MDMA also releases dopamine (DA), although with less potency. Since we have shown previously that the intrastriatal application of 5-HT facilities DA release, it was hypothesized that increased release of striatal 5-HT after MDMA may influence extracellular levels of DA. Using microdialysis in vivo, we found that (+)-MDMA (4.7 mumol/kg, i.v.) administration increased extracellular striatal DA levels to 501% of control (p < 0.01, n = 12). However, in the presence of fluoxetine (14.4 mumol/kg, s.c.), which prevents (+)-MDMA effects on 5-HT release, the (+)-MDMA-induced increase in DA was significantly less (to 375% of control, p < 0.05, vs. no fluoxetine, n = 8). In vitro studies with striatal slices, to test drug selectivity, showed that (+)-MDMA (0.3-3 microM) increased extracellular levels of both DA and 5-HT in a dose-dependent manner. Fluoxetine (3 microM) completely blocked the effects of (+)-MDMA on 5-HT release, but did not alter (+)-MDMA-induced DA release in vitro. The selective DA transport inhibitor GBR-12909 (1 microM), blocked (+)-MDMA's effect on DA release. It is concluded that 5-HT release after (+)-MDMA treatment partially contributes to (+)-MDMA's effect on DA release in vivo.  相似文献   

8.
The current hypotheses of carotid body (CB) chemoreception regard the glomus cells as the initial site of stimulus transduction. The consensus is that the transduction of chemical stimulus is coupled with the release of transmitter(s) from the glomus cells, which in turn generates action potentials in the afferent nerve terminals. Carbonic anhydrase (CA) is present in the glomus cells of the CB. Inhibition of CA activity in the CB in situ reduces the carotid chemosensory responses to CO2 and to O2, suggesting a common mechanism of chemosensing for both stimuli. However, CA inhibitors also block the red blood cell enzyme. Thus, the CO2 hydration reaction does not come to completion within the transit time of the blood from the lung to the CB. A steady-state reaction is not reached until later and so the PCO2 and pH levels in arterial blood samples are not the same as those sensed by the CB. Experiments in vitro using cat CB perfused and superfused with cell-free solutions, which had been pre-equilibrated with respiratory gases, strongly support the proposition that the CA activity in CB cells is essential for the speed and amplitude of the initial response to CO2 and for its subsequent adaptation. The immediate response to hypoxia also is delayed, but the late steady-state was less dependent on CA activity. In the nominal absence of CO2-HCO3- from the perfusate, hypoxic chemoreception persisted and its magnitude is not affected by CA inhibition, except for a delay which may be due to the initial alkaline pH of the glomus cells. Recent experiments performed in isolated glomus cells and in the whole CB show that hypoxia does not modify significantly the intracellular pH. By its simple catalytic function, CA can speed up the approach of the CO2 hydration reaction to equilibrium. However, CA may also contribute in the steady-state to the regulation of pHi by providing a continuous supply of H+ and HCO3-. Furthermore, CA performs a facilitatory role in the physiological chemosensory responses to CO2 and O2 in the presence of extracellular CO2-HCO3-. This role is likely to be related to the ion exchanger function and then to pHi regulation in the chemoreceptor cells.  相似文献   

9.
We examined in 5-day-old rats the effects of either anoxia or 8% hypoxia on extracellular monoamines such as dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) using in vivo microdialysis and subsequent HPLC. After stabilization 64 animals were exposed to 100% nitrogen for 16 min and 40 animals to 8% oxygen for 128 min. Both anoxia and hypoxia produced acute increase in the striatal extracellular DA (anoxia: P < 0.001, hypoxia: P < 0.01). Especially in anoxia, DA levels increased transiently to 2000-times the basal levels and 6-times higher than those in hypoxia. NE also increased in both anoxia and hypoxia. DOPAC and HVA decreased during hypoxia (P < 0.01 and P < 0.001, respectively), while those in anoxia were unchanged. In anoxia, decrease tendency of their levels were in short duration and that of 5-HIAA was followed by gradual increase (P < 0.001). These data demonstrated that brief exposure to anoxia or hypoxia had significant influence on striatal monoamine metabolism in immature brain and the pattern of change of monoamine in anoxia was different from that in hypoxia.  相似文献   

10.
1. Isoarecolone was approximately 250 times less potent than nicotine as an inhibitor of [3H]-nicotine binding to rat brain membranes. Isoarecolone failed to inhibit the binding of the nicotinic ligand [125I]-alpha-bungarotoxin or of the muscarinic ligand [3H]-QNB. 2. Nicotine (0.01-30 microM) evoked the release of [3H]-dopamine from striatal and frontal cortex synaptosomes, with EC50 values of approximately 0.5 microM in each case. This release was largely mecamylamine-sensitive. 3. Isoarecolone (1-200 microM) evoked predominantly mecamylamine-sensitive dopamine release from both striatal and cortical synaptosomes, with a potency at least 20 times less than that of nicotine. The maximum effect of isoarecolone was less than that of nicotine, particularly in the frontal cortex preparation. 4. In control rats treated chronically with saline, neither nicotine nor isoarecolone had clear effects on locomotor activity at the doses tested. Chronic treatment with nicotine clearly sensitized rats to the locomotor activating effect of isoarecolone was seen at a dose about 40 times larger than that of nicotine. 5. The low potency and efficacy of isoarecolone in facilitating sensitized locomotor activity resembled its lower potency and efficacy, compared with nicotine, in evoking dopamine release in vitro. The agonist profile of the nicotinic receptor population mediating dopamine release may determine the pharmacological characteristics of consequent locomotor behaviour.  相似文献   

11.
The extracellular concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum and the nucleus accumbens were measured in awake, freely-moving rats. Clozapine (20 mg/kg, i.p.) increased extracellular DA and HVA in both regions but increased DOPAC only in the striatum. Scopolamine (1 mg/kg), although it had no effect by itself in the striatum or nucleus accumbens, inhibited the ability of clozapine to increase extracellular DA, DOPAC and HVA concentrations in the striatum. The clozapine-induced increase in DA in the frontal cortex was not blocked by scopolamine. Haloperidol (1 mg/kg, i.p.) and thioridazine (10 mg/kg, i.p.) also increased extracellular DA, DOPAC and HVA in the striatum, but scopolamine pretreatment did not inhibit these increases. The results suggest that clozapine differs from haloperidol and thioridazine in that the effect of clozapine, but not that of the two neuroleptic drugs, to increase DA release in the striatum acutely depends on muscarinic receptor stimulation. These results suggest that clozapine, despite its strong muscarinic antagonist properties, does not produce full blockade of muscarinic receptors in vivo in the striatum. The interaction of clozapine with the cholinergic system in the striatum could be relevant to its lack of ability to produce extrapyramidal symptoms or tardive dyskinesia.  相似文献   

12.
Primary cultures of human bronchial epithelial cells (HBE-cells) were established to measure granulocyte-macrophage colony stimulating factor (GM-CSF) release. HBE-cells showed a basal GM-CSF release (82+/-20 ng/well/24 h; 30 donors), which was increased by interleukin-1 beta(IL-1beta, 1 ng/ml) by 270%. This effect was blocked by 1 microM dactinomycin or 10 microM cycloheximide, i.e. the stimulatory effect of IL-1beta depended on de-novo synthesis. Histamine (100 microM) and acetylcholine ( 100 nM) stimulated GM-CSF release more than two-fold above the baseline. Nicotine (1 microM) increased GM-CSF release to a similar extent, and this effect was prevented by 30 microM (+)-tubocurarine. The stimulatory effect was attenuated or even lost with high agonist concentrations (10 microM acetylcholine; 100 microM nicotine) suggesting receptor desensitization. The muscarinic receptor agonist oxotremorine did not affect GM-CSF release. Serotonin, substance P and calcitonin-gene related peptide had no effect on GM-CSF release. In conclusion, acetylcholine can trigger GM-CSF release from human airway epithelial cells via stimulation of nicotinic receptors.  相似文献   

13.
152255 (E-1,1'-(2-butene-1,4-diyl)bis[2-[4-[3-(1-piperidinyl)propoxy]-phe nyl]-1H-benzimidazole]) exhibited high affinity (Ki = 12.7 nM) for human dopamine (DA) D3 receptors expressed in CHO K1 cells but not for DA D2L receptors (Ki = 565 nM), DA D42 or DA D1 receptors (Ki > 3 microM) and a number of other neurotransmitter receptors. Affinity for human muscarinic receptors was seen in vitro but no functional muscarinic agonist and/or antagonist action was observed in vivo. Antagonist activity at DA D3 receptors was demonstrated by blockade of quinpirole-stimulated [3H]-thymidine uptake in D3 transfected cells, an effect that was 28-fold more potent than in D2-transfected cells. Unlike classical DA D2 antagonists, PD 152255 did not increase rat brain DA synthesis and it increased locomotion in habituated rats. However, like antipsychotics, PD 152255 reduced locomotor activity in mice and reduced spontaneous and amphetamine-stimulated locomotion in nonhabituated rats. These results demonstrate that PD 152255 is a DA D3 antagonist that may have antipsychotic activity.  相似文献   

14.
Dopamine (DA) and related catechols may contribute to selective degeneration of dopaminergic neurons in the substantia nigra in Parkinson's disease. To investigate whether DA induces apoptosis of dopaminergic neurons, we characterized the effects of various concentrations of exogenous DA on a substantia nigra/neuroblastoma hybrid cell line (MES 23.5 or MES). The hybrid MES cells were maintained in the presence of 50 microM glutamate in logarithmic growth on poly-D-lysine-precoated T-75 flasks and plated either onto petri dishes with glass coverslips for morphological studies or onto 6-well plates for quantification of apoptosis by flow cytometry. The results showed that DA exposure (0.5-20 microM) induced time- and dose-dependent apoptotic cell death of MES cells. To further analyze the mechanism responsible for DA-mediated apoptosis, we repeated the experiments at 20 microM DA in the presence or absence of 40 microM nomifensine, a DA re-uptake inhibitor, and 25 microM 2-amino-5-phosphonopentanoic acid (AP5), an N-methyl-D-aspartate (NMDA) receptor antagonist. The data indicate that both compounds significantly prevented DA-induced apoptosis of MES cells and that combination of AP5 and nomifensine provided greater protection against DA toxicity than AP5 alone. These results suggest for the first time that DA-induced apoptosis in dopaminergic neurons is partially attributable to increased vulnerability of these cells to non-toxic levels of excitatory amino acids, i.e., secondary excitotoxicity.  相似文献   

15.
The effects of postnatal stress on mesolimbic dopamine (DA) functioning in 90-day-old mice were investigated. Postnatal stress consisted of 15 min daily exposure to clean bedding (CB) in the absence of the mother for the first two weeks of life. Controls were daily exposed to home cage bedding (HCB) in the absence of the mother. A single brief (5-10 min) exposure to restraint produced a clear-cut increase in DA metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT)) in the nucleus accumbens septi (NAS) of adult HCB but not CB mice. Moreover, when tested in an elevated plus maze, CB mice showed more exploration and reduced fearfulness in comparison with HCB mice. Taken together, these results indicate reduced emotional reactivity in adult mice repeatedly stressed during postnatal development. Moreover, HCB mice but not CB mice showed altered behavioral responsiveness to apomorphine following repeated restraint stress (10 daily 120 min) in adult life, although no difference in the behavioral response to either a low or a high dose of apomorphine was observed in adult unstressed mice of the CB and HCB groups. These results indicate that the effects of early experiences on brain DA functioning may not be evident in basal conditions and be revealed only under environmental pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Correlations between substantia nigra (SN) dopamine (DA) cell activity and striatal extracellular DA were examined using simultaneous extracellular single-unit recordings and in vivo microdialysis performed in drug-naive rats and in rats treated repeatedly with haloperidol (HAL). Intact rats treated with HAL for 21-28 d exhibited significantly fewer active DA cells, indicating the presence of depolarization block (DB) in these cells. However, in rats that received surgical implantation of the microdialysis probe followed by a 24 hr recovery period, HAL-induced DA cell DB was reversed, as evidenced by a number of active DA neurons that was significantly higher than that in HAL-treated intact rats and similar to that of drug-naive rats. In contrast, using a modified probe implantation procedure that did not reverse SN DA neuron DB, we found striatal DA efflux to be significantly lower than in controls and significantly correlated with the reduction in DA neuron spike activity. Furthermore, although basal striatal DA efflux was independent of SN DA cell burst-firing activity in control rats, these variables were significantly correlated in rats with HAL-induced DA cell DB. Therefore, HAL-induced DB of SN DA neurons is disrupted by implantation of a microdialysis probe into the striatum using standard procedures. However, a modified microdialysis method that allowed reinstatement of DA neuron DB revealed that the HAL-induced inactivation of SN DA neurons was associated with significantly lower extracellular DA levels in the striatum. Moreover, the residual extracellular DA maintained in the presence of DB may, in part, depend on the burst-firing pattern of the noninactivated DA neurons in the SN.  相似文献   

17.
The striatum contains a high concentration of oxidizable dopamine (DA), and the aged organism shows a decreased ability to respond to oxidative stress (OS), making this area extremely vulnerable to free radical insult. To determine the receptor specificity of this putative increase in OS sensitivity, striatal slices from 6- and 24-month-old animals were incubated (30 min, 37 degrees C) in a modified Krebs medium containing 0 to 500 microM DA with or without a preincubation (15 min) in a nitrone trapping agent, 1 or 5 mM alpha-phenyl-n-tert-butyl nitrone (PBN), and changes in low Km GTPase activity (an index of receptor-G protein coupling/uncoupling) assessed in muscarinic, 5-HT1A D1, and D2 receptors stimulated with carbachol, 8 OH-DPAT-HBr, SKF 38393, or quinelorane, respectively. DA exposure induced selective decreases in the stimulated activity in all of these receptor systems, and an overall increase in conjugated dienes (56%) of the young. In the case of carbachol and 8 OH-DPAT-HBr, the DA-induced deficits in GTPase stimulation were seen primarily in the young (61 and 32%, respectively), while DA-induced deficits in quinelorane (D2) stimulation were seen in both age groups. In the case of SKF 38393-stimulation (D1) the DA-induced deficits were higher in the striatal tissue from the old. The DA-induced decreases in carbachol stimulated GTPase activity in the tissue from the young could be prevented by pretreatment with PBN or the DA uptake inhibitor, nomifensin. No effect of nomifensin was seen in the old, because their DA uptake mechanisms were already compromised. These results suggest that although age-related declines in DA uptake may provide some protection against the OS effects in muscarinic or 5-HT1A receptors, other factors may increase the vulnerability of DA neurons to OS, even with reductions in DA uptake.  相似文献   

18.
The participation of N-methyl-d-aspartate (NMDA) receptors on dopamine (DA) efflux in the striatum of anaesthetized rats, which had their DA nigrostriatal pathway previously lesioned with different doses of 6-hydroxydopamine (6-OH-DA), was assessed by in vivo microdialysis methodology. In addition, the in vivo basal DA and dihydroxy-phenyl-acetic acid (DOPAC) effluxes and the effect of local K+-depolarization on DA release were also evaluated in the striatum of these 6-OH-DA treated rats. Lesioned rats were divided in three groups corresponding to animals with 25-75%, 75-95% and >95% of striatum tissue DA depletion, respectively. Striatal DA tissue depletion between 25-75% occurred in parallel with a 30% reduction in DA extracellular levels, with a moderate 10% increase in basal fractional DA efflux, and with no statistical changes in the fractional DA efflux induced by NMDA (500 microM) receptor stimulation by reverse dialysis. Rats with higher DA tissue depletion (between 75-95%) exhibited a 60% reduction in DA extracellular levels in the striatum and this reduction occurred in parallel with a modest rise in basal fractional DA efflux, but with a striking decrease in the NMDA-induced fractional DA efflux. In rats with extreme or >95% of striatal DA tissue depletion, basal fractional DA efflux in the striatum increased quite substantially along with a recovery in the ability of NMDA receptor stimulation to induce fractional DA release. The >95% striatal DA-depleted rats also exhibited a significant decrease in tissue and extracellular DOPAC/DA ratio when compared to sham and partially DA-depleted rats. In contrast to the previous results, fractional DA efflux induced by reverse dialysis with K+ (40 mM) remained the same in the striatum of sham and all groups of DA-tissue depleted rats. The present findings suggest the existence of at least three features associated to the regulation of basal and NMDA-induced extracellular levels of DA in the striatum of rats as a function of striatal tissue DA depletion produced by 6-OH-DA. They also support the view that a differential regulation of basal and NMDA-induced DA extracellular levels occur in partial and extreme DA-depleted striatum after 6-OH-DA treatment. Such findings may have implications as regard to the participation of the NMDA receptor in the compensatory mechanisms associated to the progress of Parkinson's disease, as well as in the therapeutic treatment of this neurological disorder.  相似文献   

19.
Spontaneous [3H]dopamine ([3H]DA) overflow was measured from striatal slices in the presence of different glutamate (Glu) receptor agonists such as N-methyl-D-aspartate (NMDA), kainate (KA) and quisqualate (QA) and their corresponding antagonists, Dizocilpine maleate (MK-801), D-gamma-glutamyl-aminomethanesulfonic acid (GAMS) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively. [3H]DA uptake and release in the presence of L-Arginine (L-Arg) and NG-nitro-arginine (L-N-Arg), an inhibitor of nitric oxide (NO) synthesis were also evaluated. L-N-Arg alone or combined with L-Arg significantly reduced [3H]DA uptake at 10 and 100 microM from 33% to 44% from striatal slices. Whereas, in brain synaptosomal fractions L-Arg induced a biphasic effect on that [3H]DA uptake in a dose dependent manner, and L-N-Arg showed an absolute inhibition in 80-90% of this [3H]DA uptake at 1-500 microM. The amino acids, lysine, valine and histidine (100 microM) had a little effect inhibitory on [3H]DA uptake from synaptosomal fractions. Glu agonists, NMDA (10 microM) and KA (10 microM) importantly increased the spontaneous [3H]DA overflow, which was blocked by MK-801 (10 microM) and GAMS (10 microM), respectively. QA had no effect on [3H]DA release. L-Arg (10-200 microM) potentiated the spontaneous [3H]DA overflow in a dose dependent fashion from striatal slices, being reverted by 10 microM L-N-Arg alone or in combination with all other compounds; whereas, lysine, histidine and valine did not modify that spontaneous [3H]DA overflow. Results support the hypothesis related to the participation of NO on DA transport possibly synthesized at the dopaminergic (DAergic) terminals in the striatum; also that L-Arg concentration may determine alternative mechanisms to regulate the DAergic activity at the striatum.  相似文献   

20.
Dopamine (DA) autoreceptors expressed along the somatodendritic extent of midbrain DA neurons modulate impulse activity, whereas those expressed at DA nerve terminals regulate both DA synthesis and release. Considerable evidence has indicated that these DA autoreceptors are of the D2 subtype of DA receptors. However, many pharmacological studies have suggested an autoreceptor role for the DA D3 receptor. This possibility was tested with mice lacking the D3 receptor as a result of gene targeting. The basal firing rates of DA neurons within both the substantia nigra and ventral tegmental area were not different in D3 receptor mutant and wild-type mice. The putative D3 receptor-selective agonist R(+)-trans-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-(1)benzopyrano(4,3-b)-1,4-oxazin+ ++-9-ol (PD 128907) was equipotent at inhibiting the activity of both populations of midbrain DA neurons in the two groups of mice. In the gamma-butyrolactone (GBL) model of DA autoreceptor function, mutant and wild-type mice were identical with respect to striatal DA synthesis and its suppression by PD 128907. In vivo microdialysis studies of DA release in ventral striatum revealed higher basal levels of extracellular DA in mutant mice but similar inhibitory effects of PD 128907 in mutant and wild-type mice. These results suggest that the effects of PD 128907 on dopamine cell function reflect stimulation of D2 as opposed to D3 receptors. Although D3 receptors do not seem to be significantly involved in DA autoreceptor function, they may participate in postsynaptically activated short-loop feedback modulation of DA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号