提出一种自适应动态重组粒子群优化算法. 该算法采用凝聚的层次聚类算法, 将种群分成若干个子群体, 用一个精英集对非支配解进行存储; 根据贡献度和多样性, 对各子群体的粒子和整个种群进行自适应动态重组; 同时引入扰动算子对精英集存储的非支配解进行扰动, 实现对精英集进行动态调整. 利用具有不同特点的测试函数进行验证并与同类算法相比较, 结果表明, 所提出的算法可加快收敛速度, 提高种群的可进化能力.
相似文献针对元件可靠性为区间值的系统可靠性优化问题, 提出一种区间多目标粒子群优化方法. 首先, 建立问题的区间多目标优化模型; 然后, 利用粒子群算法优化该模型, 定义一种不精确Pareto 支配关系, 并给出编码、约束处理、外部存储器更新、领导粒子选择等关键问题的解决方法; 最后, 将该方法应用于可靠性优化问题实例, 验证了方法的有效性.
相似文献提出一种三态协调搜索多目标粒子群优化算法. 该算法提出的三态指导粒子选择策略可以很好地协调算法的局部和全局搜索能力, 且算法改进了传统的外部档案保存机制, 同时引入3 种突变因子, 使获得的非劣解具有更好的分散性. 通过对标准测试函数的求解, 并与其他经典多目标优化算法比较, 表明了新算法在收敛性和多样性方面均有较大的优越性. 最后分析了区域划分系数对所提出算法性能的影响.
相似文献提出一种多目标自适应混沌粒子群优化算法(MACPSO). 首先, 基于混沌序列提出一种新型动态加权方法选择全局最优粒子; 然后, 改进NSGA-II 拥挤距离计算方法, 并应用到一种严格的外部存档更新策略中; 最后, 针对外部存档提出一种基于世代距离的自适应变异策略. 以上操作不仅提高了算法的收敛性, 而且提高了Pareto 最优解的均匀性. 实验结果表明了所提出算法的有效性.
相似文献涡流搜索是最近提出的新型优化算法, 具有操作简单且搜索能力强的突出优点, 但在后期容易陷入早熟收敛. 对比, 通过在该算法中引入量子计算, 提出一种量子衍生涡流搜索算法. 首先将涡流中心用量子比特编码; 然后将其在Bloch 球面上实施多次旋转得到多个个体, 将最优个体作为新的涡流中心, 完成一次迭代. 对新的涡流中心再次实施旋转, 直至满足终止条件. 标准函数极值优化的实验结果表明, 所提出的方法明显优于普通涡流搜索算法.
相似文献如何在众多非劣解中为决策者推荐一个合理的方案是使用多目标粒子群算法(MOPSO) 所面临的问题. 为此, 将逼近理想解的排序方法(TOPSIS 策略) 引入到算法中. 为了提高求解精度和均匀性, 还提出了基于Pbest 的变异策略和改进的?? 邻近距离策略. 测试结论显示, 仅使用TOPSIS 策略确定Gbest 的算法, 求解精度虽好, 但均匀性较差, 而包含所有改进策略的算法在精度和均匀性方面都更优, 并且能够按照TOPSIS 方法在非劣解集中找到一个适合向决策者推荐的“理想” 方案.
相似文献针对粒子群优化算法(PSO) 在处理高维复杂函数时容易陷入局部极值、收敛速度慢的缺陷, 从系统的认知分析过程和角度出发, 提出一种基于诺兰模型(NM) 思想的改进PSO 算法. 该算法在Tent 混沌映射选择的参数的基础上, 结合NM信息融合和协调的思想, 在速度更新过程中增加均衡项, 并设计粒子群的欧氏距离指数以防止早熟, 从而实现对粒子的自动调整、保证多样性和提高算法的全局搜索能力. 最后, 运用典型函数对所提出算法进行测试, 并与最新相关算法进行比较, 结果表明, 所提出算法在全局搜索能力、效率和稳定性方面均具有明显的优势.
相似文献为了提高动态多种群粒子群(DMS-PSO) 算法的全局搜索能力, 将布谷鸟搜索算法(CS) 引入DMS-PSO 算法中, 提出DMS-PSO-CS 算法. 采用中位数聚类算法将整个种群动态划分为若干小种群, 各个小种群作为底层种群通过PSO 算法进行寻优, 再将每个小种群中的最优粒子作为高层种群的粒子通过CS 算法进行深度优化. 将所提出算法应用于CEC 2014 测试函数, 并与CS 算法和其他改进的PSO 算法进行比较. 实验结果表明, 所提出算法能够显著提高全局搜索能力和算法效率.
相似文献针对传统混沌时间序列预测模型的复杂性、低精度性和低时效性的缺点, 在倒差商连分式基础上提出全参数连分式模型, 并利用量子粒子群优化算法优化模型参数, 将参数优化问题转化为多维空间上的函数优化问题. 以二阶强迫布鲁塞尔振子和三维二次自治广义Lorenz 系统为模型, 通过四阶Runge-Kutta 法产生混沌时间序列, 并利用基于量子粒子群优化算法的全参数连分式、BP 神经网络和RBF 神经网络分别对混沌时间序列进行单步和多步预测. 仿真结果表明, 基于量子粒子群优化算法的全参数连分式结构简单、精度高、效率高, 该预测模型可被推广和应用.
相似文献针对流数据的实时、有序和维数高等特点, 提出一种基于多种群协同微粒群优化的流数据聚类算法. 该算法利用变量分而治之的思想, 多个种群协同优化多个类中心, 进而求出问题完整的类中心集合. 给出一种类中心变化趋势的预估策略, 以快速追踪环境变化. 为防止多个子微粒群同时优化一个类中心, 提出一种相似子微粒群的合并策略. 最后将所提出的算法用于多个数据集, 实验结果验证了算法的有效性.
相似文献