首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
自适应动态重组多目标粒子群优化算法   总被引:1,自引:0,他引:1  

提出一种自适应动态重组粒子群优化算法. 该算法采用凝聚的层次聚类算法, 将种群分成若干个子群体, 用一个精英集对非支配解进行存储; 根据贡献度和多样性, 对各子群体的粒子和整个种群进行自适应动态重组; 同时引入扰动算子对精英集存储的非支配解进行扰动, 实现对精英集进行动态调整. 利用具有不同特点的测试函数进行验证并与同类算法相比较, 结果表明, 所提出的算法可加快收敛速度, 提高种群的可进化能力.

  相似文献   

2.

提出一种多目标自适应混沌粒子群优化算法(MACPSO). 首先, 基于混沌序列提出一种新型动态加权方法选择全局最优粒子; 然后, 改进NSGA-II 拥挤距离计算方法, 并应用到一种严格的外部存档更新策略中; 最后, 针对外部存档提出一种基于世代距离的自适应变异策略. 以上操作不仅提高了算法的收敛性, 而且提高了Pareto 最优解的均匀性. 实验结果表明了所提出算法的有效性.

  相似文献   

3.
不确定可靠性优化问题的多目标粒子群优化算法   总被引:1,自引:0,他引:1  
章恩泽  陈庆伟 《控制与决策》2015,30(9):1701-1705

针对元件可靠性为区间值的系统可靠性优化问题, 提出一种区间多目标粒子群优化方法. 首先, 建立问题的区间多目标优化模型; 然后, 利用粒子群算法优化该模型, 定义一种不精确Pareto 支配关系, 并给出编码、约束处理、外部存储器更新、领导粒子选择等关键问题的解决方法; 最后, 将该方法应用于可靠性优化问题实例, 验证了方法的有效性.

  相似文献   

4.

如何在众多非劣解中为决策者推荐一个合理的方案是使用多目标粒子群算法(MOPSO) 所面临的问题. 为此, 将逼近理想解的排序方法(TOPSIS 策略) 引入到算法中. 为了提高求解精度和均匀性, 还提出了基于Pbest 的变异策略和改进的?? 邻近距离策略. 测试结论显示, 仅使用TOPSIS 策略确定Gbest 的算法, 求解精度虽好, 但均匀性较差, 而包含所有改进策略的算法在精度和均匀性方面都更优, 并且能够按照TOPSIS 方法在非劣解集中找到一个适合向决策者推荐的“理想” 方案.

  相似文献   

5.

为了改善粒子群优化算法的优化性能, 提出一种改进的全局粒子群优化(IGPSO) 算法. 该算法基于开采能力和搜索能力相均衡的思想提出全局邻域搜索策略和扰动策略, 使算法减少陷入局部极值的可能性, 同时以一定概率对全局最优粒子进行摄动操作, 加快算法收敛. 与其他智能算法相比较, 测试结果从寻优精度、收敛速度和非参数统计显著性方面验证了IGPSO 算法的有效性.

  相似文献   

6.
基于高斯混沌变异和精英学习的自适应多目标粒子群算法   总被引:1,自引:0,他引:1  
韩敏  何泳 《控制与决策》2016,31(8):1372-1378

为平衡多目标粒子群的全局和局部搜索能力, 提出一种基于高斯混沌变异和精英学习的自适应多目标粒子群算法. 首先, 提出一种新的种群收敛状态检测方法, 自适应调整惯性权重和学习因子的值, 以达到探索和开发的最佳平衡. 然后, 当检测到种群收敛停滞时, 采用一种带有高斯函数和混沌特性的变异算子协助种群跳出局部最优, 以增强全局搜索能力. 最后, 外部档案中的精英解相互学习, 增强算法的局部搜索能力. 在多目标标准测试问题上的仿真结果表明了所提出算法的有效性.

  相似文献   

7.
高云龙  闫鹏 《控制与决策》2016,31(4):601-608

为了提高动态多种群粒子群(DMS-PSO) 算法的全局搜索能力, 将布谷鸟搜索算法(CS) 引入DMS-PSO 算法中, 提出DMS-PSO-CS 算法. 采用中位数聚类算法将整个种群动态划分为若干小种群, 各个小种群作为底层种群通过PSO 算法进行寻优, 再将每个小种群中的最优粒子作为高层种群的粒子通过CS 算法进行深度优化. 将所提出算法应用于CEC 2014 测试函数, 并与CS 算法和其他改进的PSO 算法进行比较. 实验结果表明, 所提出算法能够显著提高全局搜索能力和算法效率.

  相似文献   

8.
李盼池  李滨旭 《控制与决策》2015,30(11):2041-2047

为了提高粒子群算法的优化能力, 提出一种新的量子衍生粒子群优化算法. 该方法采用多比特量子系统的基态概率幅对粒子编码, 基于自身最优粒子和全局最优粒子确定旋转角度, 采用基于张量积构造的多比特量子旋转门实施粒子的更新. 在每步迭代中, 只需更新粒子的一个量子比特相位, 即可更新该粒子上的所有概率幅. 标准函数极值优化的实验结果表明, 所提出算法的单步迭代时间较长, 但优化能力较同类算法有大幅度提高.

  相似文献   

9.
为提高解决多目标优化问题的能力,提出一种改进的多目标粒子群优化算法。该算法采用均匀随机初始化方法初始种群,采用快速支配策略选取非支配解,生成外部档案;通过比较粒子连续几代的更新情况来判断是否陷入局部最优并相应地采取不同的更新策略,同时引入变异因子对粒子进行扰动。实验结果表明,在世代距离GD(Generational Distance)和空间评价方法 SP(Spacing)性能指标上,改进之后的算法与另外几种对等算法相比,具有显著的整体优势。  相似文献   

10.
Pareto档案多目标粒子群优化   总被引:4,自引:0,他引:4  
设计Pareto档案多目标粒子群优化(PAMOPSO).该算法利用改进的强度Pareto进化算法2(SPEA2)对外部档案进行维护.并在维护过程中,为每个粒子从档案中选取合适的全局最好位置,将档案维护和全局最好位置选取结合在一起.将该算法应用于5个测试实例并与3种多目标优化算法比较,计算结果表明该算法性能良好.  相似文献   

11.
杨宁  霍炬  杨明 《控制与决策》2016,31(5):907-912
为提高多目标优化算法的收敛性和多样性,提出一种基于多层次信息交互的多目标粒子群优化算法.在该算法中,整个优化过程可分为标准粒子群优化层、粒子进化与学习层和档案信息交换层3个层次.粒子进化与学习层保证了每次迭代都能得到更好的粒子位置;档案信息交换层可以提供更好的全局最优.优化算法各个层次之间通过信息交互,共同提高算法的收敛性和多样性.与NSGA-Ⅱ和MOPSO算法的对比分析表明,所提出算法具有良好的性能,能够有效解决多目标优化问题.  相似文献   

12.
加速收敛的粒子群优化算法   总被引:5,自引:0,他引:5  
任子晖  王坚 《控制与决策》2011,26(2):201-206
在基本粒子群优化算法的理论分析的基础上,提出一种加速收敛的粒子群优化算法,并从理论上证明了该算法的快速收敛性,同时对该算法中的参数进行了优化.为了防止其在快速收敛的同时陷入局部最优,采用依赖部分最差粒子信息的变异操作.最后通过与其他几种经典粒子群优化算法的性能比较,表明了该算法的高效和稳健,且明显优于现有的几种经典的粒子群算法.  相似文献   

13.

针对粒子群优化算法(PSO) 在处理高维复杂函数时容易陷入局部极值、收敛速度慢的缺陷, 从系统的认知分析过程和角度出发, 提出一种基于诺兰模型(NM) 思想的改进PSO 算法. 该算法在Tent 混沌映射选择的参数的基础上, 结合NM信息融合和协调的思想, 在速度更新过程中增加均衡项, 并设计粒子群的欧氏距离指数以防止早熟, 从而实现对粒子的自动调整、保证多样性和提高算法的全局搜索能力. 最后, 运用典型函数对所提出算法进行测试, 并与最新相关算法进行比较, 结果表明, 所提出算法在全局搜索能力、效率和稳定性方面均具有明显的优势.

  相似文献   

14.
宫华  袁田  张彪 《控制与决策》2016,31(7):1291-1295

针对产品结构特征建立几何约束矩阵, 以最大化满足几何约束条件装配次数和最小化装配方向改变次数为目标, 研究产品装配序列优化问题. 利用值变换的粒子位置和速度更新规则, 基于具有随机性启发式算法产生初始种群, 提出一种带有深度邻域搜索改进策略的粒子群算法解决装配序列问题. 通过装配实例验证了所提出算法的性能并对装配序列质量进行了评价, 所得结果表明了该算法在解决装配序列优化问题上的有效性与稳定性.

  相似文献   

15.

原始粒子群优化算法(PSO) 和各种改进方法存在着参数取值固定、收敛精度低等问题. 为此, 提出一种采用抽样策略的粒子群优化算法(SS-PSO). 通过拉丁超立方抽样(LHS) 策略更新粒子速度和位置, 以加快收敛速度; 提出一种基于随机采样的最优位置修正方法, 以微调全局最优; 提出“双抽样”LHS 局部搜索方法, 以提高收敛精度. 与其他新近提出的两个算法进行对比, 结果显示SS-PSO 在一定程度上提高了算法的性能.

  相似文献   

16.
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization algorithm for Multi-Strategy,MS-MOPSO)。采用非支配排序和拥挤距离排序相结合策略,重新划分外部种群和进化种群;采用小生境选择策略,在外部种群中选择最佳粒子作为领导粒子,用于领导进化种群中粒子的进化;在进化种群中利用多尺度高斯变异策略,平衡算法的全局搜索和局部精确搜索;采用邻域认知个体极值更新策略,不断更新个体极值。将该算法应用到典型的多目标测试函数,并与其他多目标优化算法进行对比分析,测试结果表明该算法中四个策略的有效性和互补性,同时验证了该算法不但具有较好的收敛性和收敛速度,而且该算法最优解的分布具有良好的均匀性和多样性。  相似文献   

17.
基于决策者偏好区域的多目标粒子群算法研究*   总被引:2,自引:3,他引:2  
多目标优化问题中,决策者往往只对目标空间的某一区域感兴趣,因此需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法却找出全部的Pareto前沿,决策效率不高。针对该问题,给出了基于决策者偏好区域的多目标粒子群优化算法。它只求出与决策者偏好区域相关的部分Pareto最优集,从而减少了进化代数,加快收敛速度,有利于决策者进行更有效的决策。算法把解与偏好区域的距离作为影响引导者选择和剪枝策略的一个因素,运用格栅方法实现解在Pareto边界分布的均匀性。仿真结果表明该算法是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号