提出一种自适应动态重组粒子群优化算法. 该算法采用凝聚的层次聚类算法, 将种群分成若干个子群体, 用一个精英集对非支配解进行存储; 根据贡献度和多样性, 对各子群体的粒子和整个种群进行自适应动态重组; 同时引入扰动算子对精英集存储的非支配解进行扰动, 实现对精英集进行动态调整. 利用具有不同特点的测试函数进行验证并与同类算法相比较, 结果表明, 所提出的算法可加快收敛速度, 提高种群的可进化能力.
相似文献提出一种多目标自适应混沌粒子群优化算法(MACPSO). 首先, 基于混沌序列提出一种新型动态加权方法选择全局最优粒子; 然后, 改进NSGA-II 拥挤距离计算方法, 并应用到一种严格的外部存档更新策略中; 最后, 针对外部存档提出一种基于世代距离的自适应变异策略. 以上操作不仅提高了算法的收敛性, 而且提高了Pareto 最优解的均匀性. 实验结果表明了所提出算法的有效性.
相似文献针对元件可靠性为区间值的系统可靠性优化问题, 提出一种区间多目标粒子群优化方法. 首先, 建立问题的区间多目标优化模型; 然后, 利用粒子群算法优化该模型, 定义一种不精确Pareto 支配关系, 并给出编码、约束处理、外部存储器更新、领导粒子选择等关键问题的解决方法; 最后, 将该方法应用于可靠性优化问题实例, 验证了方法的有效性.
相似文献如何在众多非劣解中为决策者推荐一个合理的方案是使用多目标粒子群算法(MOPSO) 所面临的问题. 为此, 将逼近理想解的排序方法(TOPSIS 策略) 引入到算法中. 为了提高求解精度和均匀性, 还提出了基于Pbest 的变异策略和改进的?? 邻近距离策略. 测试结论显示, 仅使用TOPSIS 策略确定Gbest 的算法, 求解精度虽好, 但均匀性较差, 而包含所有改进策略的算法在精度和均匀性方面都更优, 并且能够按照TOPSIS 方法在非劣解集中找到一个适合向决策者推荐的“理想” 方案.
相似文献为平衡多目标粒子群的全局和局部搜索能力, 提出一种基于高斯混沌变异和精英学习的自适应多目标粒子群算法. 首先, 提出一种新的种群收敛状态检测方法, 自适应调整惯性权重和学习因子的值, 以达到探索和开发的最佳平衡. 然后, 当检测到种群收敛停滞时, 采用一种带有高斯函数和混沌特性的变异算子协助种群跳出局部最优, 以增强全局搜索能力. 最后, 外部档案中的精英解相互学习, 增强算法的局部搜索能力. 在多目标标准测试问题上的仿真结果表明了所提出算法的有效性.
相似文献为了提高动态多种群粒子群(DMS-PSO) 算法的全局搜索能力, 将布谷鸟搜索算法(CS) 引入DMS-PSO 算法中, 提出DMS-PSO-CS 算法. 采用中位数聚类算法将整个种群动态划分为若干小种群, 各个小种群作为底层种群通过PSO 算法进行寻优, 再将每个小种群中的最优粒子作为高层种群的粒子通过CS 算法进行深度优化. 将所提出算法应用于CEC 2014 测试函数, 并与CS 算法和其他改进的PSO 算法进行比较. 实验结果表明, 所提出算法能够显著提高全局搜索能力和算法效率.
相似文献为了提高粒子群算法的优化能力, 提出一种新的量子衍生粒子群优化算法. 该方法采用多比特量子系统的基态概率幅对粒子编码, 基于自身最优粒子和全局最优粒子确定旋转角度, 采用基于张量积构造的多比特量子旋转门实施粒子的更新. 在每步迭代中, 只需更新粒子的一个量子比特相位, 即可更新该粒子上的所有概率幅. 标准函数极值优化的实验结果表明, 所提出算法的单步迭代时间较长, 但优化能力较同类算法有大幅度提高.
相似文献针对粒子群优化算法(PSO) 在处理高维复杂函数时容易陷入局部极值、收敛速度慢的缺陷, 从系统的认知分析过程和角度出发, 提出一种基于诺兰模型(NM) 思想的改进PSO 算法. 该算法在Tent 混沌映射选择的参数的基础上, 结合NM信息融合和协调的思想, 在速度更新过程中增加均衡项, 并设计粒子群的欧氏距离指数以防止早熟, 从而实现对粒子的自动调整、保证多样性和提高算法的全局搜索能力. 最后, 运用典型函数对所提出算法进行测试, 并与最新相关算法进行比较, 结果表明, 所提出算法在全局搜索能力、效率和稳定性方面均具有明显的优势.
相似文献原始粒子群优化算法(PSO) 和各种改进方法存在着参数取值固定、收敛精度低等问题. 为此, 提出一种采用抽样策略的粒子群优化算法(SS-PSO). 通过拉丁超立方抽样(LHS) 策略更新粒子速度和位置, 以加快收敛速度; 提出一种基于随机采样的最优位置修正方法, 以微调全局最优; 提出“双抽样”LHS 局部搜索方法, 以提高收敛精度. 与其他新近提出的两个算法进行对比, 结果显示SS-PSO 在一定程度上提高了算法的性能.
相似文献