共查询到20条相似文献,搜索用时 46 毫秒
1.
扩展的树增强朴素贝叶斯分类器 总被引:1,自引:0,他引:1
树增强朴素贝叶斯分类器继承了朴素贝叶斯分类器计算简单和鲁棒性的特点,同时分类性能常常优于朴素贝叶斯分类器,然而在有连续变量的情况下要求必须进行预离散化.为了更好地表达数据的分布,减少信息损失,有必要考虑混合数据的情况.本文推导混合数据的极大似然函数,提出扩展的树增强朴素贝叶斯分类器,突破必须对连续变量进行预离散化的限制,能够在树增强朴素贝叶斯分类器的框架内处理混合变量的情况.实验测试证明其具有良好的分类精度. 相似文献
2.
反垃圾邮件技术已成为人们关注的一个焦点。基于贝叶斯理论的垃圾邮件过滤技术有着独特的优势,而其中的朴素贝叶斯模型具有算法简单、有效,易于实现等优点而成为最常用的模型。本文系统地介绍了朴素贝叶斯及其扩展模型的核心思想,并对朴素贝叶斯模型的发展作了大胆的预测,这对贝叶斯垃圾邮件过滤技术具有理论和现实的意义。 相似文献
3.
分类准确性是分类器最重要的性能指标,特征子集选择是提高分类器分类准确性的一种有效方法。现有的特征子集选择方法主要针对静态分类器,缺少动态分类器特征子集选择方面的研究。首先给出具有连续属性的动态朴素贝叶斯网络分类器和动态分类准确性评价标准,在此基础上建立动态朴素贝叶斯网络分类器的特征子集选择方法,并使用真实宏观经济时序数据进行实验与分析。 相似文献
4.
多种策略改进朴素贝叶斯分类器 总被引:8,自引:1,他引:7
朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,影响了它的分类性能。通过广泛深入的研究,对改进朴素贝叶斯分类器的多种策略进行了系统的分析和归类整理,为进一步的研究打下坚实的基础。 相似文献
5.
基于高斯混合模型的遥感影像连续型朴素贝叶斯网络分类器 总被引:1,自引:0,他引:1
提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。 相似文献
6.
朴素贝叶斯分类器具有很高的学习和分类效率,但不能充分利用属性变量之间的依赖信息.贝叶斯网络分类器具有很强的分类能力,但分类器学习比较复杂.本文建立广义朴素贝叶斯分类器,它具有灵活的分类能力选择方式、效率选择方式及学习方式,能够弥补朴素贝叶斯分类器和贝叶斯网络分类器的不足,并继承它们的优点. 相似文献
7.
基于特征加权的朴素贝叶斯分类器 总被引:13,自引:0,他引:13
朴素贝叶斯分类器是一种广泛使用的分类算法,其计算效率和分类效果均十分理想。但是,由于其基础假设“朴素贝叶斯假设”与现实存在一定的差异,因此在某些数据上可能导致较差的分类结果。现在存在多种方法试图通过放松朴素贝叶斯假设来增强贝叶斯分类器的分类效果,但是通常会导致计算代价大幅提高。该文利用特征加权技术来增强朴素贝叶斯分类器。特征加权参数直接从数据导出,可以看作是计算某个类别的后验概率时,某个属性对于该计算的影响程度。数值实验表明,特征加权朴素贝叶斯分类器(FWNB)的效果与其他的一些常用分类算法,例如树扩展朴素贝叶斯(TAN)和朴素贝叶斯树(NBTree)等的分类效果相当,其平均错误率都在17%左右;在计算速度上,FWNB接近于NB,比TAN和NBTree快至少一个数量级。 相似文献
8.
张璠 《计算机技术与发展》2005,15(4)
朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,影响了它的分类性能.通过广泛深入的研究,对改进朴素贝叶斯分类器的多种策略进行了系统的分析和归类整理,为进一步的研究打下坚实的基础. 相似文献
9.
用Matlab语言建构贝叶斯分类器 总被引:2,自引:1,他引:2
文本分类是文本挖掘的基础与核心,分类器的构建是文本分类的关键,利用贝叶斯网络可以构造出分类性能较好的分类器。文中利用Matlab构造出了两种分类器:朴素贝叶斯分类器NBC,用互信息测度和条件互信息测度构建了TANC。用UCI上下载的标准数据集验证所构造的分类器,实验结果表明,所建构的几种分类器的性能总体比文献中列的高些,从而表明所建立的分类器的有效性和正确性。笔者对所建构的分类器进行优化并应用于文本分类中。 相似文献
10.
11.
12.
13.
14.
Bayesian networks are graphical models that describe dependency relationships between variables, and are powerful tools for studying probability classifiers. At present, the causal Bayesian network learning method is used in constructing Bayesian network classifiers while the contribution of attribute to class is over-looked. In this paper, a Bayesian network specifically for classification-restricted Bayesian classification networks is proposed. Combining dependency analysis between variables, classification accuracy evaluation criteria and a search algorithm, a learning method for restricted Bayesian classification networks is presented. Experiments and analysis are done using data sets from UCI machine learning repository. The results show that the restricted Bayesian classification network is more accurate than other well-known classifiers. 相似文献
15.
高斯粒子滤波算法重要性权值方差不会随迭代次数的增加而增加, 能够较好地解决粒子退化问题, 但其重要性密度函数没有考虑最新的量测信息, 导致有效粒子数减少, 算法滤波性能下降. 针对该问题, 提出一种基于Gaussian-Hermite 滤波(GHF) 的高斯粒子滤波算法, 采用GHF构造高斯粒子滤波的重要性密度函数, 考虑最新的量测信息, 增加有效粒子数, 提高算法的滤波精度. 仿真结果表明, 所提出算法的滤波精度明显优于高斯粒子滤波算法.
相似文献16.
17.
基于全过程综合敌我识别中不同阶段综合敌我识别信息来源的差异,采用动态贝叶斯网络进行建模.在建模过程中,由于参数众多、样本难以全面获得、学习训练计算量巨大等问题,将随机模糊思想引入参数学习,从而既可充分利用先验信息,又尽可能地消除主观因素.最后仿真了整个过程,其结果验证了所提出方法的有效性. 相似文献
18.
In this paper we present several Bayesian algorithms for learning Tree Augmented Naive Bayes (TAN) models. We extend the results in Meila & Jaakkola (2000a) to TANs by proving that accepting a prior decomposable distribution over TAN’s, we can compute the exact Bayesian model averaging over TAN structures and parameters in polynomial time. Furthermore, we prove that the k-maximum a posteriori (MAP) TAN structures can also be computed in polynomial time. We use these results to correct minor errors in Meila & Jaakkola (2000a) and to construct several TAN based classifiers. We show that these classifiers provide consistently better predictions over Irvine datasets and artificially generated data than TAN based classifiers proposed in the literature.Editors: Pedro Larrañaga, Jose A. Lozano, Jose M. Peña and Iñaki Inza 相似文献
19.
由于组合导航系统具有强非线性和模型不确定性的特点, 工程中扩展卡尔曼滤波无法满足组合导航系统实际应用的要求. 为此, 针对贝叶斯框架下高斯类非线性滤波算法的估计性能给出具体分析. 首先, 在估计点处对非线性函数进行泰勒展开获得泰勒近似, 通过一阶矩和二阶矩分析滤波算法的近似精度; 然后, 通过数值稳定性对非线性滤波算法进行分析; 最后, 分别采用低维和高维模型对各滤波算法进行对比分析, 为组合导航系统的实践提供借鉴.
相似文献20.
将CBMeMBer滤波器推广到多扩展目标跟踪场合,提出扩展目标CBMeMBer滤波器,并给出其高斯混合实现的步骤.该滤波器主要对原始CBMeMBer滤波器的更新步进行改进,引入多量测似然函数,避免了对目标数目的过估计.仿真结果表明,在多扩展目标跟踪场合,扩展目标CBMeMBer滤波器对目标数目和状态的估计精度高于CBMeMBer滤波器,接近于扩展目标PHD滤波器. 相似文献