首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The effect of temperature and humidity on electrospinning   总被引:1,自引:1,他引:0  
Electrospinning is a process that generates nanofibres. Temperature and humidity affect this process. In this article the influence of humidity and temperature on the formation and the properties of nanofibres are studied using cellulose acetate (CA) and poly(vinylpyrrolidone) (PVP) as target materials. The experiments indicate that two major parameters are dependent of temperature and have their influence on the average fibre diameter. A first parameter is the solvent evaporation rate that increases with increasing temperature. The second parameter is the viscosity of the polymer solution that decreases with increasing temperature. The trend in variation of the average nanofibre diameter as a function of humidity is different for CA and PVP, which can be explained by variations in chemical and molecular interaction and its influence on the solvent evaporation rate. As the humidity increases, the average fibre diameter of the CA nanofibres increases, whilst for PVP the average diameter decreases. The average diameter of nanofibres made by electrospinning change significantly through variation of temperature and humidity.  相似文献   

2.
Electrospinning is a versatile method for manufacturing polymer-based multi-functional and high-performance nanofibrillar network. Two important characteristics, namely minimum diameter variation and bead area, render the nanofibre mats acceptable for many membrane type applications, but the relationship between processing parameters and microstructures is still not well understood. This article outlines a systematic study via the design of experiments in the context of selecting process control parameters while electrospinning nonwoven mats of nanofibres from poly(l-lactic acid). The goals are to obtain a robust set of parameters to reduce the variation in product quality by performing the minimum number of experiments. A desirable combination has been found to be low concentration of polymer solution, low feed rate, comparatively high applied voltage and a large distance between the collector and the needle. However, a low concentration of polymer solution may result in some bead formation if other factors are not changed accordingly.  相似文献   

3.
An electrospinning method was used to spin semi-crystalline poly(L-lactide) (PLLA) nanofibres. Processing parameter effects on the internal molecular structure of electrospun PLLA fibres were investigated by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Take-up velocity was found as a dominant parameter to induce a highly ordered molecular structure in the electrospun PLLA fibres compared to solution conductivity and polymer concentration, although these two parameters played an important role in controlling the fibre diameter. A collecting method of a single nanofibre by an electrospinning process was developed for the tensile tests to investigate structure-property relationships of the polymer nanofibres. The tensile test results indicated that higher take-up velocity caused higher tensile modulus and strength due to the ordered structure developed through the process.  相似文献   

4.
To obtain uniform and reproducible nanofibres, it is important to understand the effect of the different electrospinning parameters on the nanofibre morphology. Even though a lot of literature is available on the electrospinning of nanofibres, only minor research has been performed on the effect of the relative humidity (RH). This paper investigates the influence of this parameter on the electrospinning process and fibre morphology of the hydrophilic polyamide 4.6 and the less hydrophilic polyamide 6.9. First, the electrospinning process and deposition area of the nanofibres is examined at 10, 50 and 70 % RH. Subsequently, the effect of the polyamide concentration and solvent ratio on the fibre morphology is investigated using scanning electron microscopy and differential scanning calorimetry. It was found that the nanofibre diameter decreased with increasing RH. This resulted in less stable crystals for polyamide 4.6 while electrospinning of polyamide 6.9 at higher RH led to slightly more stable crystals. In conclusion, the water affinity of a polymer is an important factor in predicting the nanofibre morphology at different humidities.  相似文献   

5.
Xia W  Zhang D  Chang J 《Nanotechnology》2007,18(13):135601
Bioactive glass nanofibres have excellent bioactivity and cell compatibility, and are regarded as a promising next-generation biomaterial in the bone-regeneration field. This paper is concentrated on the effect of electrospinning parameters on the diameter and morphology of bioactive glass nanofibres, and the process of in vitro biomineralization. In this work, sol-gel glass nanofibres with high bioactivity were prepared by electrospinning processing in the presence of poly(vinyl pyrrolidone) (PVP) and pluronic P123 (EO(20)-PO(70)-EO(20)) as chain entanglements. The influence of the polymer concentration, types of polymer and electric field strength on the fibre diameter was examined. The average diameter of these BG nanofibres could be controlled in the range from 85 to 400?nm. The addition of PVP resulted in sufficient chain entanglement and the formation of smooth BG nanofibres, and the addition of P123 led to a further decrease of the diameter with appropriate electric field strength, which held the balance between the electrostatic repulsive force and surface tension of the electrospinning solution. Furthermore, the early stage of in vitro biomineralization of the BG nanofibres in the simulated body fluid (SBF) was studied in this work. The behaviour of in vitro biomineralization of bioactive glass nanofibres was different to the conventional ones, and the structure of bioactive glasses contributed to the formation process of hydroxyapatite.  相似文献   

6.
Fabricating nanofibres with reproducible characteristics is an important demand in the membrane industry in order to establish commercial viability. In this study, the effect of controlled atmospheric conditions on electrospun cellulose acetate (CA) nanofibres was evaluated for temperatures ranging 17.5–32.5 °C and relative humidity ranging 20–70%. CA solution (0.2 g/mL) in a solvent mixture of acetone/dimethylformamide/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150 nm to 1 μm. The resulting nanofibres were analysed by differential scanning calorimetry, showing a correlation of reducing melt enthalpy with increasing atmospheric temperature. The opposite was seen with increasing atmospheric humidity, which conferred increasing melt enthalpy. Analysis of scanning electron microscopy images provided a correlation of reducing average fibre diameter with increasing atmospheric temperature and increasing fibre diameter with increasing atmospheric humidity. These results correlate with the melt enthalpy results, suggesting that finer CA nanofibres infer a lower melt enthalpy. Together these studies provide strong evidence that the controlled atmospheric conditions affect the fibre diameter of the resulting electrospun nanofibres. A salient observation in this study was that increased humidity reduced the effect of fibre beading yielding a more consistent and therefore better quality of fibre. This has apparent implications for the reproducibility of nanofibre production and offers a new method of controlling fibre morphology. This study has highlighted the requirement to control atmospheric conditions during the electrospinning process to fabricate reproducible fibre mats.  相似文献   

7.
Solutions of polyacrylonitrile (PAN) were electrospun using a range of process parameters, resulting in fibre diameters from 10 to 320?nm. A nonlinear neural network system model was used to analyse the dependence of the fibre diameter on the process parameters, and used to simulate conditions for electrospinning 40-60?nm diameter fibres. These results indicated that flow rate is most important for determining fibre diameter. It was not possible to find the appropriate conditions for electrospinning sub-25?nm fibres. Precise control of the ambient temperature and relative humidity will be critical to producing electrospun fibres that are sub-25?nm. Further, it is unlikely that sub-25?nm fibres will be produced without significant changes in the electrospinning apparatus, for example, by use of focusing and jet-steering fields, alternate carrier gases to modify the discharge characteristics, or patterned electrospinning.  相似文献   

8.
A novel method for the electrospinning of multiple polymer jets into nanofibres is presented. In this work, 20?wt% nylon 6 solution was electrified and pushed by air pressure through the walls of a porous polyethylene tube. Multiple jets formed on the porous surface and electrospun into nanoscale fibres. The length weighted fibre diameters have a similar mean diameter to those from a single jet but broader in distribution. The mass production rate from the porous tube is 250 times greater than from a typical single jet.  相似文献   

9.
A novel material formulation method of polylactic acid /tubular clay nanocomposites via electrospinning was introduced and the important processing parameters such as solution concentration, clay loading, material feed rate were particularly investigated. The hybrid fibre diameter, the clay dispersability and the thermal properties of such nanocomposites were then characterised by using the scanning electron microscopy, wide-angle X-ray diffraction and differential scanning calorimetry, respectively, to establish a fundamental structure–property relationship for the future application.  相似文献   

10.
Nanofibres having shape memory effect (SME) were successfully spun from shape memory polyurethanes solution by electrospinning method in this experiment. Scanning electron microscopy (SEM) images showed that the resulted nanofibres had ultrafine diameter in a range of 50 to 700 nm. Uniform nanofibres could be prepared by adjusting applied voltage, concentration and feeding rate. Especially, the concentration played a key role in controlling its diameters. In addition, the differential scanning calorimetry (DSC) results indicated that the obtained nanofibres would satisfy the structure requirement of segmented polymer having SME. Finally, the cyclic tensile test gave a direct proof that the resulted nanofibres showed good SME: 98% shape recovery and 80% shape fixity can be obtained after several cyclic times.  相似文献   

11.
A novel, simple geometry for high throughput electrospinning from a bowl edge is presented that utilizes a vessel filled with a polymer solution and a concentric cylindrical collector. Successful fiber formation is presented for two different polymer systems with differing solution viscosity and solvent volatility. The process of jet initiation, resultant fiber morphology and fiber production rate are discussed for this unconfined feed approach. Under high voltage initiation, the jets spontaneously form directly on the fluid surface and rearrange along the circumference of the bowl to provide approximately equal spacing between spinning sites. Nanofibers currently produced from bowl electrospinning are identical in quality to those fabricated by traditional needle electrospinning (TNE) with a demonstrated ~ 40 times increase in the production rate for a single batch of solution due primarily to the presence of many simultaneous jets. In the bowl electrospinning geometry, the electric field pattern and subsequent effective feed rate are very similar to those parameters found under optimized TNE experiments. Consequently, the electrospinning process per jet is directly analogous to that in TNE and thereby results in the same quality of nanofibers.  相似文献   

12.
The introduction of different reinforcement materials (yarns, fibrils, etc) into the membranes has been investigated with the aim of maintaining adequate membrane properties in terms of mechanical strength, good chemical stability, low swelling at critical temperatures and a stable electrochemical performance in PEFC. An innovative technique for the development of membranes is based on polymeric films containing polymeric nanofibres obtained through electrospinning. The electrospinning of Nafion blends with polyvinylpirrolidone (PVP) and polystyrene (PS) was investigated in this work. In particular, the morphology and diameter of electrospun fibres as a function of the electrospinning parameters and solution preparation have been studied and in both cases, a critical concentration of blend solution was found. Beaded fibres were obtained above such a concentration and, below it, only fibre mats were observed. Reinforced Nafion-based membranes were realised by using the obtained spun films. Preliminary proton conductivity and fuel cell results have shown the capability of operating in a fuel cell environment with a slightly higher performance than pure Nafion but having an improved stability at high temperatures.  相似文献   

13.
The electrospinning technique was used for the nanofiber production of Alyssum lepidium mucilage with acetic acid and polyvinyl alcohol (PVA) polymer. Some parameters such as voltage, polymer concentration, tip‐to‐collector distance, and feed rate were optimised and applied for the fabrication of the nanofiber membranes of the seeds mucilage. The scanning electron microscopy images were used to find the optimised conditions for the electrospinning process. It was found that the aqueous solution of Alyssum mucilage/PVA (80:20), voltage (18 kV), polymer concentration (50%), tip‐to‐collector distance (10 cm) and feed rate (0.125 ml/h) could be successfully used to obtain uniform nanofibers with diameters as low as 139.9 nm. X‐ray diffraction and Fourier transform infrared spectrometer analysis also proved the presence of the alyssum mucilage/PVA nanofiber. In this study, the used electrospun procedure was biodegradable, inexpensive, non‐toxic, and maintainable enough to optimise the mucilage nanofiber fabrication as a new source, thereby improving the potential application of the nanofiber biomembrane in filtration and medical systems with biocompatible and biodegradable properties.Inspec keywords: electrospinning, nanofibres, nanofabrication, polymer fibres, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectraOther keywords: Alyssum lepidium mucilage, electrospinning, physicochemical characterisation, nanofiber production, acetic acid, polyvinyl alcohol, PVA polymer, polymer concentration, tip‐to‐collector distance, feed rate, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectrometer analysis, voltage 18 kV, distance 10 cm  相似文献   

14.
Cellulose-based materials are one of the most commonly used materials for biomedical applications, which normally applied as carriers for pharmaceuticals and drug-releasing scaffolds. In this study, cellulose acetate (CA) was used to fabricate the nanofibrous membrane using the electrospinning technique. CA solutions at different concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone solvents with the ratio of 3 : 1. The field emission scanning electron microscope results showed that electrospinning of 10% (w/v) CA produced nanofibres with many beads. When the CA concentration was increased to 14% (w/v), bead-free nanofibres were produced. The contact angle measurement results confirmed the hydrophilic properties of nanofibres. In order to prevent common bacterial infections, a model drug, Tetracycline ? HCL was incorporated into the CA nanofibres. The drug-loaded CA nanofibres showed antibacterial activity against Gram-positive and Gram-negative bacteria. CA nanofibres had high water uptake properties. The CA nanofibrous membrane was non-toxic to human skin fibroblast cells. Thus the CA nanofibres with 14% (w/v) concentration exerted suitable properties for wound healing application.  相似文献   

15.
Nanofibres can be processed into several high-end applications due to their unique characteristics, especially when based on a diversity of polymers with specific properties. This, however, requires that the nanofibrous structures are produced in a highly reproducible way. The article gives focus to polyamide (PA) 6.9, a less exploited PA though with interesting properties such as a very low moisture absorption. To trace and understand the dominant parameters that allow for the aimed reproducible characteristics, the influence of the solution parameters on the steady state behaviour during electrospinning as well as the resultant fibre morphology is followed by scanning electron microscopy and differential scanning calorimetry. Results show a significant effect of the amount of non-solvent acetic acid, added to the solvent formic acid, on the steady state behaviour and the fibre morphology. The non-solvent acetic acid broadens the steady state window by making the electrospin solutions more suitable to obtain uniform and reproducible nanofibrous structures with a narrow nanofibre diameter distribution. The mixture of the solvent formic acid and the non-solvent acetic acid strongly contributes to the future potentials of PA 6.9 nanofibres, with its leading to a smaller fibre distribution and moreover highly reproducible in time.  相似文献   

16.
Electrospun thermoplastic nanofibres were employed to toughen carbon/epoxy composites by direct deposition on carbon fibre fabrics, prior to resin impregnation and curing. The toughening mechanism was investigated with respect to the critical role of phase morphology on the toughening effect in carbon/epoxy composites. The influences of solubility in epoxy and melting characteristics of thermoplastics were studied towards their effects on phase structure and delamination resistance. For the three different thermoplastic nanofibre interlayers used in this work, i.e. poly(ε-caprolactone) (PCL), poly(vinylidene fluoride) (PVDF) and polyacrylonitrile (PAN) nanofibre interlayers, only PCL nanofibres produced toughening. Although cylinder-shaped fibrous macrophases existed in all three interlayer regions, only PCL nanofibres had polymerisation-induced phase separation with epoxy, forming ductile thermoplastic-rich particulate microphases on the delamination plane. These findings clearly show that the polymerisation-induced phase separation is critical to the interlayer toughening by thermoplastic nanofibres. An optimal concentration (15 wt.%) of PCL solution for electrospinning was found to produce composites with enhanced mode I interlaminar fracture toughness (GIC), stable crack growth and maintained flexural strength and modulus.  相似文献   

17.
Electrospinning was used to generate polymer nanofibres from blends of poly-vinyl cinnamate (PVCN) and a cholesteric silicone polymer. Only blends that contained at least 40 % of PVCN produced fibres. Both differential scanning calorimetry and electron dispersion spectroscopy data indicate that the samples are miscible over a wide temperature interval. The variation of fibre diameter with concentration is nonlinear with a well-defined minimum corresponding to an 80 % PVCN blend. The fibres are birefringent with Kerr constants similar to that of cholesteric liquid crystals. Although not significant, the Kerr constant increases with increasing silicone polymer concentration.  相似文献   

18.
Fibrous membrane with a fibre diameter of 229 +/- 35 nm was fabricated from polyimide solution by electrospinning. Nanofibrous membrane with a fibre diameter of 251 +/- 37 nm was fabricated by combined electrospinning and electrospraying for polyimide/TiO2. Among the different solvents studied, ethanol was the effective solvent for dispersing the TiO2 nanoparticles in the nanofibrous matrix during electrospraying. The average pore size of polyimide membrane was obtained in the range 0.79-0.89 microm whereas the average pore size of polyimide/TiO2 membrane was found to be in the range 1.23 microm. The tensile stress of polyimide nanofibrous membrane and also polyimide/TiO2 composite fibrous membrane determined to be 0.36 MPa and 0.65 MPa respectively. Nanofibrous membrane containing TiO2 nanoparticles on the surface of the polyimide nanofibres improved the mechanical stability of the membrane.  相似文献   

19.
In this study, chitosan/polylactide (CP) blend solutions in trifluoroacetic acid as a co-solvent with different blend ratio were electrospun. Effects of different CP ratio and process parameters on the diameter of electrospun nanofibers were experimentally investigated. The fiber morphology and the distribution of fiber diameter were investigated by scanning electron microscopy. Response surface methodology (RSM) was used to define and evaluate a quantitative relationship between electrospinning parameters, average fiber diameters and its distribution for each chitosan–polylactide ratio. Applied voltage and polymer solution extrusion rate are the process variables which control the fiber diameter at similar spinning distances (15 cm). Fiber diameter was correlated to these variables by using a second-order polynomial function. The fibers were of diameter ranging from 94 to 389 nm. The predicted fiber diameters were in good agreement with the experimental results. Contour plots were obtained to identify the processing variables suitable for producing nanofibers. It was concluded that ratio of polylactide and chitosan in the blend polymer played an important role to the diameter of fibers and standard deviation of fiber diameter. The processing factors were found statistically significant in the production of nanofibers.  相似文献   

20.
Cobaltite of magnesium, embedded in polyvinylpyrrolidone (PVP) polymeric fibers forming nanocomposite were synthesized by combining conventional sol-gel method with electrospinning method. Ultrathin diameter polymer fibers containing nanoregime ceramic particles were obtained by varying various process parameters like voltage, concentration, feed rate, distance between nozzle tip and base plate on an indigenously assembled electrospinning unit. Polyvinylpyrrolidone (PVP) and polyvinylalcohol (PVA) polymeric fibers in nanoregime were also synthesized separately and the effect of the process parameters was observed on the fiber thickness and continuity. Characterization was done to verify the synthesis parameter effect on structural morphology of polymer based nanofiber composite. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were used as tools for study of structural morphology and its correlation with process parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号