首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 55 毫秒
1.
张苗  张德贤 《微机发展》2008,18(3):139-141
文本分类是数据挖掘的基础和核心,支持向量机(SVM)是解决文本分类问题的最好算法之一。传统的支持向量机是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。介绍了支持向量机的基本原理,对现有主要的多类支持向量机文本分类算法进行了讨论和比较。提出了多类支持向量机文本分类中存在的问题和今后的发展。  相似文献   

2.
支持向量机是在模式分类中表现优秀的一种分类方法。对现有的基于SVM的文本多类分类方法进行了介绍和比较.研究了分类器特征空间模式问题,在这些工作基础上,提出了并行SVM的模型。  相似文献   

3.
传统的支持向量机(SVM)是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。本文在对现有主要的四种多类支持向量机分类算法讨论的基础上,结合文本分类的特点,详细介绍了决策树支持向量机和几种改进多类支持向量机方法在文本分类中的应用。  相似文献   

4.
5.
支持向量机是在模式分类中表现优秀的一种分类方法。对现有的基于SVM的文本多类分类方法进行了介绍和比较,研究了分类器特征空间模式问题,在这些工作基础上,提出了并行SVM的模型。  相似文献   

6.
邹汉斌  雷红艳  张伟  陈芸  周霆 《计算机工程与设计》2006,27(6):1072-1073,1076
文本分类属于有指导的机器学习,而构造一个按照兴趣分类的分类器,需要做大量的预处理工作,来收集正负的训练样例,但负例的收集是非常困难的。提出了一个只有正例的基于支持向量机的学习模型。实验表明,该学习模型对多类文本分类的分类精度和速度都是非常理想。  相似文献   

7.
文本分类是文本数据挖掘的基础和核心,为解决在文本分类中二值支持向量机不能进行多类分类的问题,论文提出采用二叉树对多个二值支持向量机(SVM)子分类器进行组合,并运用聚类分析中类距离方法规范二叉树生成过程的基于二叉树的多类支持向量机(MSVM)分类算法。实验数据表明,相对于KNN 算法和朴素贝叶斯算法,基于二叉树的MSVM 算法在文本分类上更具优越性。该算法已应用于科技奖励信息检索系统中,取得了良好的效果。  相似文献   

8.
针对有特殊结构的文本,传统的文本分类算法已经不能满足需求,为此提出一种基于多示例学习框架的文本分类算法。将每个文本当作一个示例包,文本中的标题和正文视为该包的两个示例;利用基于一类分类的多类分类支持向量机算法,将包映射到高维特征空间中;引入高斯核函数训练分类器,完成对无标记文本的分类预测。实验结果表明,该算法相较于传统的机器学习分类算法具有更高的分类精度,为具有特殊文本结构的文本挖掘领域研究提供了新的角度。  相似文献   

9.
多类支持向量机文本分类方法   总被引:5,自引:3,他引:5  
文本分类是数据挖掘的基础和核心,支持向量机(SVM)是解决文本分类问题的最好算法之一.传统的支持向量机是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题.介绍了支持向量机的基本原理,对现有主要的多类支持向量机文本分类算法进行了讨论和比较.提出了多类支持向量机文本分类中存在的问题和今后的发展.  相似文献   

10.
支持向量机多类分类算法研究   总被引:33,自引:4,他引:33  
提出一种新的基于二叉树结构的支持向量(SVM)多类分类算法.该算法解决了现有主要算法所存在的不可分区域问题.为了获得较高的推广能力,必须让样本分布广的类处于二叉树的上层节点,才能获得更大的划分空间.所以,该算法采用最小超立方体和最小超球体类包含作为二叉树的生成算法.实验结果表明,该算法具有一定的优越性.  相似文献   

11.
提出一种基于超椭球的多类文本分类算法。对每一类样本,在特征空间求得一个包围该类尽可能多样本的最小超椭球,使得各类样本之间通过超椭球隔开。对待分类样本,通过判断其是否被超椭球包围来确定类别。实验结果表明,与超球方法相比,该方法具有较高的分类精度和分类速度。  相似文献   

12.
该文是对当前支持向量机在文本分类上的应用进行研究。先介绍了支持向量机的基本方法.再通过对不同方法的支持向量札分类算法的比较,进行一个总体酌描述和概括开对未来发展发向做了一个预测。  相似文献   

13.
用于微阵列分类的Huberized多类支持向量机   总被引:2,自引:0,他引:2  
提出了一种能同时进行基因选择和微阵列分类的新型多类支持向量机. 通过结合huberized hinge 损失函数与弹性网络惩罚, 所提支持向量机能自动地进行基因选择并激励一种群体效应. 所提支持向量机的系数路关于单正则化参数是分段线性的, 并基于此发展了解路算法, 减少了计算的复杂性. 白血病数据集上的实验验证了所提方法的有效性.  相似文献   

14.
该文是对当前支持向量机在文本分类上的应用进行研究。先介绍了支持向量机的基本方法,再通过对不同方法的支持向量机分类算法的比较,进行一个总体的描述和概括。并对未来发展发向做了一个预测。  相似文献   

15.
一种新的二叉树多类支持向量机算法   总被引:33,自引:1,他引:33  
采用二叉树结构对多个二值支持向量机(SVM)子分类器组合,可实现多类问题的分类,并且还可克服传统多类SVM算法存在的不可分区域的情况。针对现有二叉树多类SVM方法未采用有效的二叉树生成算法,该文采用聚类分析中的类距离思想,提出了一种新的基于二叉树的多类SVM分类方法。实验结果表明,新算法具有较高的推广性能。  相似文献   

16.
针对短文本具有特征稀疏、不规范、主题不明确等特点,提出一种有效的基于支持向量机的短文本分类方法。由于汉语中依存语法分析准确率和时间效率不高的问题,针对客户文本咨询的特点,在对短文本分类时,本文并未对句子进行依存语法的分析,而是主要使用句法特征进行分析,找出文本的子串和子序列形成候选特征集,之后利用信息增益、互信息、卡方统计3种特征选择方法进行有效特征选择,最后采用支持向量机方法进行文本分类。将本文所提的模型应用于一组真实数据,实验结果表明,平均正确率可达到84.19%,从而验证该分类方法的鲁棒性和有效性。  相似文献   

17.
一种新的基于SVDD的多类分类算法   总被引:2,自引:0,他引:2  
  相似文献   

18.
张彪  刘贵全 《计算机工程》2010,36(22):184-186
提出一种在选取特征时考虑特征与特征之间联系的算法。对特征词之间的关联关系进行挖掘,找出那些对类别有重要影响的特征词组,而这些特征词组中的每个单词在传统单独打分策略的特征选择算法中很可能会因分值过低而被丢弃。在Ruters21578、20Newsgroup文本数据集上进行实验,将算法与广泛应用的特征选择算法(信息增益、CHI等)进行对比、分析。实验结果表明该方法是一种有特点、有效的特征选择方法。  相似文献   

19.
特征选择在文本分类中是非常必要的,这是由于它可以使分类更加有效与准确。本文根据特征选择方法χ2统计方法的不足,对χ2统计进行改进,并在支持向量机分类算法上进行实验。实验结果表明改进的方法可以提高分类的准确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号