首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
社会网络数据的隐私保护   总被引:1,自引:0,他引:1  
保护公开的社会网络数据隐私越来越受到关注。本文简单回顾了现有的隐私保护社会网络数据技术,重点讨论社会网络数据的隐私问题。  相似文献   

2.
社会网络数据发布具有动态性与不安全性,为避免使用不同时刻的社会网络数据进行关联攻击,兼顾节点属性多样性,提出了一种动态社会网络数据发布隐私保护方法。首先,根据匿名规则进行节点聚类,求解当前时刻的匿名图,保证同一个匿名集中节点属性多样性最大的前提下,数据发布后的节点属性与边的泄露概率均小于1/k。然后,生成相邻时刻数据关系图的差集,结合当前时刻的匿名图,删除前序时刻不存在的节点与边,逆向更新已发布数据,保证不同时刻下的匿名图具有相似的图结构,抵御关联攻击。最后,采用新浪微博数据和邮件往来数据进行实验验证,对所提方法的安全性和可用性进行评估。实验结果表明所提方法兼顾了用户数据隐私保护和数据可用性的个性化需求。  相似文献   

3.
社会网络数据发布中的隐私保护研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
伴随Web2.0技术的发展和应用,许多社会网站被创建,使得关于个人的社会网络信息大量被收集和发布.为了保证个人隐私的安全.在进行社会网络数据发布的同时要进行隐私保护.社会网络数据发布的隐私保护是近年来新兴的研究课题,国外的学者已经提出了一些研究成果.但国内的研究尚处于起步阶段.文中对社会网络数据发布的隐私保护研究成果进行了总结.介绍了社会网络中存在的隐私信息类型和隐私攻击类型,重点阐述了隐私保护模型和技术,指出了社会网络数据发布中隐私保护存在的待解决的问题和面临的挑战.  相似文献   

4.
针对单机工作站环境下处理大规模动态社会网络图时执行效率低,以及动态社会网络发布中数据可用性较差的问题,提出基于预测链接的分布式动态社会网络隐私保护方法D-DSNBLP。该方法通过Pregel-like消息迭代更新模型,实现匿名大规模图数据的并行处理。首先通过快速迭代完成结点分组;其次根据各个组内的结点属性值并行构建候选结点集合;最后通过构建互斥边集合添加边,实现结点的隐私保护。实验表明,D-DSNBLP方法提高了大规模动态社会网络发布的效率,保证了匿名图的数据可用性。  相似文献   

5.
社会网络分析可能会侵害到个体的隐私信息,需要在发布的同时进行隐私保护。针对社会网络发布中存在的邻域攻击问题,提出了基于超边矩阵表示的d-邻域子图k-匿名模型。该模型采用矩阵表示顶点的d-邻域子图,通过矩阵的匹配来实现子图的k-匿名,使得匿名化网络中的每个节点都拥有不少于k个同构的d-邻域子图。实验结果表明该模型能够有效地抵制邻域攻击,保护隐私信息。  相似文献   

6.
针对动态社会网络数据多重发布中用户的隐私信息泄露问题,结合攻击者基于背景知识的结构化攻击,提出了一种动态社会网络隐私保护方法。该方法首先在每次发布时采用k-同构算法把原始图有效划分为k个同构子图,并最小化匿名成本;然后对节点ID泛化,阻止节点增加或删除时攻击者结合多重发布间的关联识别用户的隐私信息。通过数据集实验证实,提出的方法有较高的匿名质量和较低的信息损失,能有效保护动态社会网络中用户的隐私。  相似文献   

7.
为解决动态社会网络发布中敏感边的隐私保护问题,针对攻击者将目标节点在不同时刻的节点度作为背景知识的应用场景,提出了一种新的基于动态网络的敏感边的隐私保护方法,它的思想是:首先通过k-分组和(k,Δd)-匿名发布隐私保护方法来确保目标节点不能被唯一识别,被攻击识别的概率不超过1/k;其次根据泄露概率对边进行保护,确保敏感边泄露的概率不超过用户给定参数u。理论分析和实验证明,所提出的方法可以抵御攻击者对敏感边的攻击,能有效地保护社会网络中用户的隐私信息,同时保证了动态社会网络发布的质量。  相似文献   

8.
针对数据供应商发布社交网络数据时可能出现的泄露隐私问题,提出一种基于生成对抗网络的隐私保护方法(GPGAN)。采用GAN作为学习模型捕捉网络结构的随机游走,设计奖励函数指引创建包含重要信息的随机游走。提出基于游走样本的匿名图构造方法,通过添加差分隐私得到匿名概率邻接矩阵,重构社交网络图。实验结果表明,与其它图生成相比,该模型具有良好的图结构特征学习能力。通过度量评估实验验证了GPGAN可以在合理的隐私预算下保留所需的数据效用,优于当前主流的社交网络隐私保护方法。  相似文献   

9.
社会网络的隐私保护研究综述*   总被引:3,自引:0,他引:3  
罗亦军  刘强  王宇 《计算机应用研究》2010,27(10):3601-3604
某些网站将匿名处理后的社会网络数据公开发布,或者提供给科研机构、大学或者其他组织和个人使用,而这些数据往往侵犯了用户的隐私,但有关社会网络中个人信息安全和隐私保护的研究却处于起步阶段。综述了当前在线社会网络的研究成果,主要就社会网络及其隐私漏洞、信息泄露、再识别攻击、聚集攻击、推理攻击等进行了分析,并对今后的发展提出了预测,为社会网络的科研指出了可行的研究方向。  相似文献   

10.
韦伟  李杨  张为群 《计算机科学》2012,39(3):104-106
随着网络信息技术的快速发展,社交网络迅速涌现。针对社交网络隐私保护问题,提出了一种基于GSNPP算法的隐私保护方法。它通过对社交网络中节点进行聚类,再对生成的簇进行簇内泛化及簇间泛化,来对社交网络进行匿名化处理,拟达到隐私保护的目的;同时量化了社交网络匿名化处理过程中所带来的不同类型信息的丢失。最后通过实验验证了该方法的可行性和有效性。  相似文献   

11.
社会网络数据发布隐私保护技术综述   总被引:7,自引:3,他引:7       下载免费PDF全文
刘向宇  王斌  杨晓春 《软件学报》2014,25(3):576-590
对社会网络隐私保护的研究现状与进展进行了阐述.首先介绍了社会网络隐私保护问题的研究背景,进而从社会网络中的隐私、攻击者背景知识、社会网络数据隐私保护技术、数据可用性与实验测评等方面对当前研究工作进行了细致的分类归纳和分析,指出了当前社会网络隐私保护的不足以及不同隐私保护技术间的对比和优缺点,并对未来需要深入研究的方向进行了展望.对社会网络数据隐私保护研究的主流方法和前沿进展进行了概括、比较和分析.  相似文献   

12.
随着Facebook的上市,社交网络再次成为全球的焦点,网络中无时无刻不在产生用户数据,通过对海量的非结构化数据进行价值挖掘,社交网络引领其他互联网领域的应用率先进入大数据时代。本文描述了现阶段社交网络的特点及其对当今社会的影响,并对其存在的安全问题进行了分析,最后给出了相应的对策。  相似文献   

13.
数据发布中的隐私保护问题是目前信息安全领域的一个研究热点.如何有效地防止敏感隐私信息泄露已成为信息安全领域的重要课题.差分隐私保护技术是最新发展起来的隐私保护技术,它的最大优点是不对攻击者的背景知识做任何特定假设,该技术不但能为隐私数据发布提供强有力的安全防护,而且在实践中也得到了广泛应用.现有的差分隐私保护技术并不能全面有效地处理高维隐私数据的发布问题,虽然基于贝叶斯网络的隐私数据发布方法(PrivBayes)有效地处理了高维数据集转化为低维数据集的发布问题,但这种方法也存在一定的缺陷和不足.基于对贝叶斯网络的隐私数据发布方法的分析研究和改进优化,建立了加权贝叶斯网络隐私数据发布方法(加权PrivBayes),通过理论分析和实验评估,该方法不仅能保证原始隐私发布数据集的隐私安全性,同时又能大幅提升原始隐私发布数据集的数据精确性.  相似文献   

14.
邹劲松  李芳 《计算机应用研究》2021,38(2):564-566,571
针对非结构化大数据发布中的隐私保护问题,提出了一种基于改进的可伸缩l-多样性(improved scalable l-diversity,Im SLD)大数据发布隐私保护方法。该算法采用基于两阶段条件随机场的命名实体识别(named entity recognition,NER)方法将非结构化数据表示为结构化形式,设计一种改进的可伸缩l-多样性算法来对表现良好的非结构化数据进行匿名化,实现保护非结构化大数据发布的隐私,通过Apache Pig实现Im SLD算法来使其具有可伸缩性。实验表明与MRA和SKA算法相比,改进的Im SLD算法在不同数据集上提供相同级别的隐私时信息损失均优于对比的另外两种算法。  相似文献   

15.
大数据为各种网络服务的用户带来了诸多便利,但也导致了严重的隐私泄露风险.随着5G时代的到来,数据传输更加便捷,隐私保护问题将会面临更为严峻的挑战.目前,中心化差分隐私和以RAPPOR为代表的本地差分隐私技术,可以为隐私信息的查询与收集过程提供一定保护.然而,针对社交网络、商业网络、金融网络这类复杂的图数据,尚缺乏有效的...  相似文献   

16.
基于生成对抗网络和差分隐私提出一种文本序列数据集脱敏模型,即差分隐私文本序列生成网络(DP-SeqGAN)。DP-SeqGAN通过生成对抗网络自动提取数据集的重要特征并生成与原数据分布接近的新数据集,基于差分隐私对模型做随机加扰以提高生成数据集的隐私性,并进一步降低鉴别器过拟合。DP-SeqGAN 具有直观通用性,无须对具体数据集设计针对性脱敏规则和对模型做适应性调整。实验表明,数据集经DP-SeqGAN脱敏后其隐私性和可用性明显提升,成员推断攻击成功率明显降低。  相似文献   

17.
无线传感网中的数据融合技术是降低节点通信量的最为有效的方式之一,而隐私保护是用户数据安全性的要求,有效的数据融合隐私保护算法是无线传感应用的重要研究方向。近年来,出现的一些基于数据分片混合的数据融合隐私保护算法,如SMART(Slicing-Mix-AggRegaTion),在分片数不小于3时可以有效保护数据的安全,但在分片交换阶段网络中数据包过多,数据包容易产生碰撞而丢失。文中提出了一种新的数据融合隐私保护算法LTPART,它在采用一种安全有效的密钥分配策略的基础上,利用新的数据分片算法,降低了安全通信时数据的通信量。在数据融合阶段,LTPART为每一层分配固定时间片和浮动时间片,来保证节点数据充分融合及融合的精确性。仿真实验表明,在有效保护数据隐私的前提下,LTPART要比SMART(J=3)少N(N为网络中节点的数目)次节点间的通信。  相似文献   

18.
王璐  孟小峰  郭胜娜 《软件学报》2016,27(8):1922-1933
随着大数据时代的到来,大量的用户位置信息被隐式地收集.虽然这些隐式收集到的时空数据在疾病传播、路线推荐等科学、社会领域中发挥了重要的作用,但它们与用户主动发布的时空数据相互参照引起了大数据时代时空数据发布中新的个人隐私泄露问题.现有的位置隐私保护机制由于没有考虑隐式收集的时空数据与用户主动发布的位置数据可以相互参照的事实,不能有效保护用户的隐私.首次定义并研究了隐式收集的时空数据中的隐私保护问题,提出了基于发现-消除的隐私保护框架.特别地,提出了基于前缀过滤的嵌套循环算法用于发现隐式收集的时空数据中可能泄露用户隐私的记录,并提出基于频繁移动对象的假数据添加方法消除这些记录.此外,还分别提出了更高效的反先验算法和基于图的假数据添加算法.最后,在若干真实数据集上对提出的算法进行了充分实验,证实了这些算法有较高的保护效果和性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号