首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
为了提高阻塞流水线调度问题的求解性能,提出了一种改进的萤火虫算法来求解阻塞流水线调度问题.首先,提出一种离散机制把个体的实数编码形式转换成离散的作业序列,从而使算法能够应用于离散问题求解;其次,设计一种双重初始化方法,并将NEH启发式方法应用到初始化中来,使算法有一个较优的初始化环境,提高初始种群的解的质量;此外,重新设计了算法中个体的移动方式来增大搜索域;最后,以一定概率对种群中的个体进行局部搜索,加强算法的局部搜索性能.通过对Taillard数据集中部分实例进行求解,实验结果验证了新算法的有效性.  相似文献   

2.
为了更好地研究生产调度问题,针对置换流水线调度问题,提出了一种新颖的群智能优化算法,即萤火虫算法。萤火虫算法模拟了萤火虫通过发光进行信息交流的这种行为特征从而发展演变为一种启发式算法;并分析了萤火虫算法的仿生原理和数学模型。应用MATLAB软件,对CAR1问题在不同的扰动下对算法进行了仿真测试,并将萤火虫算法和微粒群算法相比较,仿真结果表明了萤火虫算法优化生产调度问题的可行性和有效性。该算法有待进一步的深入研究。  相似文献   

3.
针对多目标置换流水车间调度问题,提出一种基于萤火虫算法的混合算法.该混合算法以萤火虫算法为框架,利用NEH(Nawaz-Enscore-Ham)模型及机器编码方式初始化种群,保证在增加初始化种群多样性的同时提高初始种群质量;引入概率模型,用以记录工件间及工件与加工机器间的信息,同时利用概率矩阵中的信息组合区块,并利用区块组合人造解,用以提高算法的收敛速度及增加可行解的多样性;最后,为验证该混合算法的有效性,对OR-library中的Reeves案例集进行仿真测试,同时与其他相关智能算法进行求解性能比较,验证了该混合算法具有良好的求解性能.  相似文献   

4.
改进并行蚁群算法求解置换流水线调度问题   总被引:2,自引:0,他引:2  
为了解决置换流水线的调度问题,提出了改进的并行蚁群算法.针对置换流水线问题本身的特性,在蚂蚁系统算法(ACS)的基础上,设计出了新的启发式信息算法.在计算大数据量的情况下,通过设计的新规律对数据进行分组,并对分组进行并行计算,然后合并各组最优解来问题的最优解.实验结果表明,该改进方法行之有效,新的启发式信息提高了解的质量,而按数据规律的分组并行不仅缩小查找最优值时间,相比于随机分组的并行算法,更加提高了解的质量.  相似文献   

5.
《信息与电脑》2019,(21):43-45
针对置换流水线调度问题,笔者提出了一种基于Halton序列和优化边界约束的改进布谷鸟搜索算法,建立了以工件的最大完工时间为目标的算法模型,最后通过对若干Taillard Benchmark问题进行仿真实验,表明改进布谷鸟搜索算法解决置换流水线调度问题的有效性。  相似文献   

6.
针对蚂蚁算法在求解置换流水车间调度问题时易陷入局部最优以及计算时间较长的缺点,对最大最小蚂蚁系统(MMAS)进行了改进。在该算法中,采用NEH启发式算法提高初始解质量,并通过自适应的调节策略进一步提高蚁群算法的搜索能力。运用提出的混合算法求解Taillard基准测试集,并将测试结果与其他算法进行比较,验证了该调度算法的有效性。  相似文献   

7.
在焦炉推焦优化调度数学模型的基础上,提出了一种带变异因子的改进人工萤火虫群优化算法。首先设计一种可调节比率的萤火虫飞行概率计算方式,使其可按照问题的实际情况进行人工调节;其次引入变异因子,增强人工萤火虫算法的搜索能力,并采用一种最优-最差荧光素更新方式,降低劣质解被选择的概率,保证算法的收敛速度。最后,仿真实验表明,所提出算法在求解乱笺炉数较多的优化调度问题时具有很高的求解质量和精度。  相似文献   

8.
提出了一种求解置换流水车间调度的蚁群优化算法。该算法的要点是结合了NEH启发式算法和蚁群优化方法。理论论证和对置换流水车间调度问题的基准测试表明了该算法的有效性。  相似文献   

9.
针对零空闲流水线调度问题,建立以最大完成时间为目标的数学模型,并提出了解决问题的改进细菌觅食优化算法。在标准细菌觅食优化算法的基础上,引入了交叉优化算子、混合复制策略以及一种基于健康度和适应度共同控制的自适应迁徙概率,以加速算法的收敛过程,并有效抑制精英个体的逃逸,防止解发生退化。采用路径编码方式,通过MATLAB算例试验,表明了改进细菌觅食优化算法在求解零空闲流水线调度问题上的可行性和有效性;同时,运用两种方式产生初始解:随机方式和NEH方法,进一步验证算法的鲁棒性。  相似文献   

10.
多构造蚁群优化求解置换流水车间调度问题   总被引:2,自引:0,他引:2  
针对置换流水车间调度问题,提出了一种多构造蚁群优化求解算法。在该算法中,蚁群采用两种方式构造解,分别是基于NEH(Nawaz-Enscore-Ham,NEH)启发式算法和Rajendran启发式算法,并根据解的质量,自适应地调整两种构造方式在蚁群中所占的比例。对置换流水车间调度问题的基准问题测试表明,提出的算法是有效的。  相似文献   

11.
将离散微粒群与蛙跳算法相结合解决以最大完工时间为指标的批量无等待流水线调度问题.结合微粒群算法较强的全局收敛能力和蛙跳算法较强的深度搜索能力,设计了三种混合算法,平衡了算法的全局开发能力和局部探索能力.对随机生成不同规模的实例进行了广泛的实验,仿真实验结果的比较表明了所得混合算法的有效性和高效性.  相似文献   

12.
刘翱  邓旭东  李维刚 《计算机科学》2017,44(7):203-209, 250
水波优化算法(Water Wave Optimization,WWO)是最近被提出的一种新型的群智能优化算法。它尽管具有控制参数少、操作简单、容易实现等优点,但是也存在收敛较慢、搜索精度低等不足。针对水波优化算法的不足,首先,从理论上分析并揭示算法收敛时控制参数应满足的条件;然后,提出满足上述条件的改进水波优化算法,改进算法采取自适应机制来调节算法参数,进一步增强了全局探索和局部开发的平衡能力;最后,对4种算法(ApWWO,WWO,FA,MVO)在10个标准测试函数上的寻优性能进行仿真实验和统计比较。结果表明,ApWWO在搜索精度、速度和鲁棒性等方面均显著优于WWO和FA,在5个测试函数上优于MVO;与PSO和GA的对比结果表明,ApWWO具有较好的寻优性能。进一步分析了维数和种群规模对ApWWO的影响,并使用ApWWO来求解置换流水线调度问题,结果表明ApWWO能够取得较好的求解效果。  相似文献   

13.
针对既存在阻塞限制工件又存在无等待约束工件的柔性流水车间调度问题, 提出了一种离散粒子群优化的求解方法。该方法采用基于排列的编码形式, 设计了推进—迭代算法进行解码并计算问题目标值, 利用离散粒子群优化算法进行全局优化, 利用迭代贪婪(iterated greedy, IG)算法提高种群个体的局部搜索能力。此外, 根据问题特点, 提出最早释放优先(first release first, FRF)和最早完工优先(first complete first, FCF)两种机器分配策略。仿真结果表明, 所提出的方法求解混合约束下柔性流水车间调度问题是可行的、有效的。  相似文献   

14.
基于Petri网模型的JSP粒子群优化调度   总被引:1,自引:0,他引:1  
秦娜  乐晓波  刘武 《计算机应用》2008,28(8):2166-2169
提出一种有效的基于Petri网建模及改进的编码粒子群算法的车间作业调度问题优化算法,分析对比了现有的作业车间调度领域中的基于人工智能的优化算法,对所提出的基于Petri网建模和改进的粒子群算法的优化算法进行了性能分析,并对该算法进行了仿真研究,结果表明该算法是可行、有效的。  相似文献   

15.
    
As same with many evolutional algorithms, performance of simple PSO depends on its parameters, and it often suffers the problem of being trapped in local optima so as to cause premature convergence. In this paper, an improved particle swarm optimization with decline disturbance index (DDPSO), is proposed to improve the ability of particles to explore the global and local optimization solutions, and to reduce the probability of being trapped into the local optima. The correctness of the modification, which incorporated a decline disturbance index, was proved. The key question why the proposed method can reduce the probability of being trapped in local optima was answered. The modification improves the ability of particles to explore the global and local optimization solutions, and reduces the probability of being trapped into the local optima. Theoretical analysis, which is based on stochastic processes, proves that the trajectory of particle is a Markov processes and DDPSO algorithm converges to the global optimal solution with mean square merit. After the exploration based on DDPSO, neighborhood search strategy is used in a local search and an adaptive meta-Lamarckian strategy is employed to dynamically decide which neighborhood should be selected to stress exploitation in each generation. The multi-objective combination problems with DDPSO for finding the pareto front was presented under certain performance index. Simulation results and comparisons with typical algorithms show the effectiveness and robustness of the proposed DDPSO.  相似文献   

16.
改进微粒群算法求解模糊交货期Flow-shop调度问题   总被引:1,自引:0,他引:1  
针对模糊交货期Flow-shop调度问题的特点,论文提出用微粒群这种具有快速收敛、全局性能好的迭代优化算法进行求解,并使用惩罚函数、增加数据记忆库和自适应变异机制等方法对微粒群算法进行改进,减少了算法陷入局部极值的可能性。通过仿真实例,改进微粒群算法的全局寻优、收敛性和克服早熟的能力均优于遗传、启发式算法。  相似文献   

17.
Permutation flow shop scheduling (PFSP) is among the most studied scheduling settings. In this paper, a hybrid Teaching–Learning-Based Optimization algorithm (HTLBO), which combines a novel teaching–learning-based optimization algorithm for solution evolution and a variable neighborhood search (VNS) for fast solution improvement, is proposed for PFSP to determine the job sequence with minimization of makespan criterion and minimization of maximum lateness criterion, respectively. To convert the individual to the job permutation, a largest order value (LOV) rule is utilized. Furthermore, a simulated annealing (SA) is adopted as the local search method of VNS after the shaking procedure. Experimental comparisons over public PFSP test instances with other competitive algorithms show the effectiveness of the proposed algorithm. For the DMU problems, 19 new upper bounds are obtained for the instances with makespan criterion and 88 new upper bounds are obtained for the instances with maximum lateness criterion.  相似文献   

18.
为更有效地解决以最大完工时间最小化为目标的置换流水车间调度问题,提出了一种自适应混合粒子群算法(SHPSO)。该算法结合Q学习设计了参数自适应更新策略,以平衡算法的探索和开发;同时引入粒子停滞判断方法,使用平局决胜机制和Taillard加速算法改进基于迭代贪婪的局部搜索策略,对全局极值进行局部搜索,帮助粒子跳出局部最优。实验结果表明,SHPSO算法取得的平均相对百分偏差(RPDavg)对比其他四种改进PSO算法至少下降了83.2%,在求解质量上具有明显优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号