共查询到19条相似文献,搜索用时 62 毫秒
1.
针对回归模型在进行属性选择未考虑类标签之间关系从而导致回归效果不理想,提出了一种新的具有鲁棒性的低秩属性选择算法。具体为,在线性回归的模型框架下,通过低秩约束来考虑类标签间的相关性和通过稀疏学习理论中的[l2,p-]范数来考虑属性间的关联结构,以此去除不相关的冗余属性的影响;算法通过嵌入子空间学习方法(线性判别分析(LDA))来调整属性选择结果。经实验验证,提出的属性选择算法在六个公开数据集上的效果均优于四种对比算法。 相似文献
2.
针对噪声或者离群点通常会增加矩阵的秩的问题,提出一个在低秩限制下的基于超图的稀疏属性选择算法。具体地,该算法首先利用其他属性稀疏地表达每一个属性来获得属性自表达系数矩阵。然后,利用超图正则化因子获取数据的局部结构将子空间学习嵌入到属性选择的框架中。同时,利用范数惩罚自表达系数矩阵和损失函数,挖掘出属性之间的关系和样本间的关系来帮助算法有效地进行属性选择,最终提高模型的预测能力。在UCI数据集上的实验结果表明,该算法相比其它对比算法,能更有效地选取重要属性,并取得很好的分类效果。 相似文献
3.
针对电子系统故障诊断中有效特征提取困难,核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同一类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择。将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其它流形的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。 相似文献
4.
针对高维数据具有低秩形式和属性冗余等特点,提出一种基于属性自表达的无监督超图属性选择算法。具体地,该算法首先利用属性自表达特点用其他属性稀疏地表达每个属性,此自表达形式使用低秩假设寻找高维数据的低秩表示,然后建立超图正则化因子保持高维数据的局部结构,最后利用稀疏正则化因子进行属性选择。属性自表达特性确定属性的重要性,低秩表示相当于考虑数据的全局信息进行子空间学习,超图正则化因子考虑数据的局部结构对数据进行子空间学习。该算法实际上考虑数据全局和局部信息进行子空间学习,更是一种嵌入了子空间学习的属性选择算法。实验结果表明,该算法相比其它对比算法,能更有效地选取属性,并能取得很好的分类效果。 相似文献
5.
空间光滑且完整的子空间学习算法 总被引:1,自引:0,他引:1
提出一种空间光滑且完整的子空间学习算法.它融合了主成分分析、空间光滑的子空间学习算法和局部敏感判别投影的技术特点.不但保持了数据流形的全局和局部几何结构,而且保持了它的判别信息和空间关系.从原始样本提取全局和局部特征经线性变换组成新样本,再从新样本中提取最佳分类特征,最后由分类器完成分类识别.同一般的子空间算法相比,该算法提高了识别率.实验结果验证了该算法的有效性. 相似文献
6.
7.
主动学习已经被证明是一种成功的机器学习算法,最主要的缺点是它只注重样本的标签信息而忽略了样本的分布信息.因此带来的后果就是稳定性差,容易陷入局部最优解,同时对初始样本的选择非常敏感.论文将稀疏子空间聚类与主动学习相结合,首先利用稀疏子空间聚类找到原始数据的分布信息,然后利用该信息指导主动学习选取初始样本,使样本标注更加有效,提高了主动学习的效率,同时降低了主动学习对初始样本的敏感度.最后通过多组仿真实验证明,本方法可以有效的改善主动学习的性能. 相似文献
8.
《计算机应用与软件》2016,(11)
受属性选择处理高维数据表现的高效性和低秩自表达方法在子空间聚类上成功运用的启发,提出一种基于稀疏学习的自表达属性选择算法。算法首先将每个属性用其他属性线性表示得到自表达系数矩阵;然后结合稀疏学习的理论(即整合L2,1-范数为稀疏正则化项惩罚目标函数)实现属性选择。在以分类准确率和方差作为评价指标下,相比其他算法,实验结果表明该算法可更高效地选择出重要属性,且显示出非常好的鲁棒性。 相似文献
9.
局部保持流形学习算法通过保持局部邻域特性来挖掘隐藏在高维数据中的内在流形结构。然而,对于缺乏足够训练样本的高维数据集,或者高维数据集存在非线性结构和高维数据特征中存在冗余、干扰特征,使得在原特征空间中利用欧式距离定义的邻域关系并不能真实反映数据的内在流形结构,从而影响算法的性能。提出利用正约束寻找特征子空间的方法,使得在此子空间中更多的同类样本紧聚,并进一步在该子空间中构建邻域关系来挖掘高维数据的内在流形,形成基于特征子空间邻域特性的局部保持流形学习算法(NFS-LPP和NFS-NPE)。它们在一定程度上克服了高维小样本数据集难以正确挖掘内在流形结构的问题,在Yale和ORL人脸库上的分类和聚类实验验证了其有效性。 相似文献
10.
否定选择算法(NSA)是免疫检测器生成的重要算法,传统否定选择算法在亲和力计算过程中未考虑不同种类抗原关键特征与冗余特征之间的差异性,存在算法检测性能较低的问题。对此,提出了一种基于抗原软子空间聚类的否定选择算法(ASSC-NSA)。该算法首先利用抗原软子空间聚类计算出不同种类抗原的各个关键特征及其权值,随后通过这些关键特征引导检测器生成以有效地减少冗余特征的影响,从而提高算法检测性能。实验结果表明,在BCW与KDDCup数据集上,相对于经典的否定选择算法,ASSC-NSA能在误报率无明显变化的情况下显著地提高检测率。 相似文献
11.
针对无标签高维数据的大量出现,对机器学习中无监督特征选择进行了研究。提出了一种结合自表示相似矩阵和流形学习的无监督特征选择算法。首先,通过数据的自表示性质,构建相似矩阵,结合低维流形能够表示高维数据结构这一流形学习思想,建立一种考虑流形学习的无监督特征选择优化模型。其次,为了保证选择更有用及更稀疏的特征,采用◢l◣▼2,1▽范数对优化模型进行约束,使特征之间相互竞争,消除冗余。进而,通过变量交替迭代对优化模型进行求解,并证明了算法的收敛性。最后,通过与其他几个无监督特征算法在四个数据集上的对比实验,表明所给算法的有效性。 相似文献
12.
多源适应学习是一种旨在提升目标学习性能的有效机器学习方法。针对多标签视觉分类问题,基于现有的研究进展,研究提出一种新颖的联合特征选择和共享特征子空间学习的多源适应多标签分类框架,在现有的图Laplacian正则化半监督学习范式中充分考虑目标视觉特征的优化处理,多标签相关信息在共享特征子空间的嵌入,以及多个相关领域的判别信息桥接利用等多个方面,并将其融为一个统一的学习模型,理论证明了其局部最优解只需通过求解一个广义特征分解问题便可分别获得,并给出了算法实现及其收敛性定理。在两个实际的多标签视觉数据分类上分别进行深入实验分析,证实了所提框架的鲁棒有效性和优于现有相关方法的分类性能。 相似文献
13.
针对现有属性选择算法平等地对待每个样本而忽略样本之间的差异性,从而使学习模型无法避免噪声样本影响问题,提出一种融合自步学习理论的无监督属性选择(UFS-SPL)算法。首先自动选取一个重要的样本子集训练得到属性选择的鲁棒性初始模型,然后逐步自动引入次要样本提升模型的泛化能力,最终获得一个能避免噪声干扰而同时具有鲁棒性和泛化性的属性选择模型。在真实数据集上与凸半监督多标签属性选择(CSFS)、正则化自表达(RSR)和无监督属性选择的耦合字典学习方法(CDLFS)相比,UFS-SPL的聚类准确率、互信息和纯度平均提升12.06%、10.54%和10.5%。实验结果表明,UFS-SPL能够有效降低数据集中无关信息的影响。 相似文献
14.
为解决高维数据在分类时造成的“维数灾难”问题,提出一种新的将核函数与稀疏学习相结合的属性选择算法。具体地,首先将每一维属性利用核函数映射到核空间,在此高维核空间上执行线性属性选择,从而实现低维空间上的非线性属性选择;其次,对映射到核空间上的属性进行稀疏重构,得到原始数据集的一种稀疏表达方式;接着利用L 1范数构建属性评分选择机制,选出最优属性子集;最后,将属性选择后的数据用于分类实验。在公开数据集上的实验结果表明,该算法能够较好地实现属性选择,与对比算法相比分类准确率提高了约3%。 相似文献
15.
16.
通过分析具有稀疏特征的对象—属性子空间的特征,发现其边缘存在交叉重叠区域现象,为此,提出了基于聚类思想的具有稀疏特征的对象—属性子空间边缘的重叠区域归属算法(OASEDA),该算法能有效解决对象—属性子空间的独立性,算法根据子空间内部紧凑度和子空间之间分离度相对大小确定子空间边缘重叠区域的归属,并基于K-means算法结合权重理论设计了重叠区域归属判断目标函数,最后通过实验证明了该方法的有效性。 相似文献
17.
针对高维的数据中往往存在非线性、低秩形式和属性冗余等问题,提出一种基于核函数的属性自表达无监督属性选择算法——低秩约束的非线性属性选择算法(LRNFS)。首先,将每一维的属性映射到高维的核空间上,通过核空间上的线性属性选择去实现低维空间上的非线性属性选择;然后,对自表达形式引入偏差项并对系数矩阵进行低秩与稀疏处理;最后,引入核矩阵的系数向量的稀疏正则化因子来实现属性选择。所提算法中用核矩阵来体现其非线性关系,低秩考虑数据的全局信息进行子空间学习,自表达形式确定属性的重要程度。实验结果表明,相比于基于重新调整的线性平方回归(RLSR)半监督特征选择算法,所提算法进行属性选择之后作分类的准确率提升了2.34%。所提算法解决了数据在低维特征空间上线性不可分的问题,提升了属性选择的准确率。 相似文献
18.
19.
针对大多数高维数据之间不仅有相似性,而且还有非线性关系等特点,提出一种基于局部结构学习的非线性属性选择算法。该算法首先通过核函数把数据映射到高维空间,在高维空间中表示出数据属性之间的非线性关系;然后在低维空间中通过局部结构学习来充分挖掘属性之间的相似性,同时通过低秩约束来排除噪声的干扰;最后通过稀疏正则化因子来进行属性选择。其通过核函数映射来找出数据属性之间的非线性关系,运用局部结构学习来找出数据属性之间的相似性,是一种嵌入了局部结构学习的非线性属性选择算法。实验结果表明,该算法相比其他的对比算法,有更好的效果。 相似文献