首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extended state observer (ESO) is a key part of the active disturbance rejection control approach, a new control strategy in dealing with large uncertainty. In this paper, a nonlinear ESO is designed for a kind of lower triangular nonlinear systems with large uncertainty. The uncertainty may come from unmodeled system dynamics and external disturbance. We first investigate a nonlinear ESO with high constant gain and present a practical convergence. Two types of ESO are constructed with explicit error estimations. Secondly, a time varying gain ESO is proposed for reducing peaking value near the initial time caused by constant high gain approach. The numerical simulations are presented to show visually the peaking value reduction. The mechanism of peaking value reduction by time varying gain approach is analyzed.  相似文献   

2.
In this paper, we apply the active disturbance rejection control approach to output‐feedback stabilization for uncertain lower triangular nonlinear systems with stochastic inverse dynamics and stochastic disturbance. We first design an extended state observer (ESO) to estimate both unmeasured states and stochastic total disturbance that includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance, and uncertainty caused by the deviation of control parameter from its nominal value. The stochastic total disturbance is then compensated in the feedback loop. The constant gain and the time‐varying gain are used in ESO design separately. The mean square practical stability for the closed‐loop system with constant gain ESO and the mean square asymptotic stability with time‐varying gain ESO are developed, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output‐feedback control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

In this paper, both linear extended state observer (ESO) and nonlinear ESO with homogeneous weighted functions are proposed for a class of multi-input multi-output (MIMO) nonlinear systems composed of coupled subsystems with large stochastic uncertainties. The stochastic uncertainties in each subsystem including internal coupled unmodelled dynamics and external stochastic disturbance without known statistical characteristics are lumped together as the stochastic total disturbance (extended state) of each subsystem. The linear ESO and nonlinear ESO are designed separately for real-time estimation of not only the unmeasured state but also the stochastic total disturbance of each subsystem. The practical mean square convergence of these two classes of ESOs are developed. Some numerical simulations are presented to demonstrate the effectiveness of the ESOs with the advantages of smaller peaking values and more accurate estimation by the nonlinear ESO.  相似文献   

4.
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.  相似文献   

5.
In this paper, the practical mean-square convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems modelled by the Itô-type stochastic differential equations with vast stochastic uncertainties is developed. We first design an extended state observer (ESO) to estimate both the unmeasured states and the stochastic total disturbance which includes unknown internal system dynamics, external stochastic disturbance without known statistical characteristics, unknown stochastic inverse dynamics, and uncertainty caused by the deviation of control parameter from its nominal value. The stochastic total disturbance is then cancelled (compensated) in the feedback loop. An ESO-based output-feedback control is finally designed analogously as for the system without uncertainties. The practical mean-square reference tracking and practical mean-square stability of the resulting closed-loop system are achieved. The numerical experiments are carried out to illustrate the effectiveness of the proposed approach.  相似文献   

6.
考虑带非参数不确定项的随机非线性系统自适应观测器设计问题.不同于已有结果,系统的不确定项无需满足Lipschitz连续性条件,也不必要仅仅是系统输出的函数.通过设计一个带参数自适应律的非线性观测器来重构系统状态,该观测器结构简单目易于实现.应用Lyapunov稳定性理论和随机微分理论证明该观测器是最终有界的,并且它的界可以通过选取适当的参数进行调节.最后,数值仿真结果表明了该观测器的有效性.  相似文献   

7.
This paper concerns about the global disturbance rejection problem for uncertain nonlinear lower triangular systems with integral input‐to‐state stable (iISS) inverse dynamics and an uncertain exosystem. The main challenges addressed in this paper include uncertain exosystem, unknown control direction, iISS inverse dynamics, and complex structure of lower triangular systems. Because of the presence of both uncertain exosystem and unknown control direction, simply combining the existing techniques for each of these challenges cannot solve the proposed problem. In fact, to handle the current case, appropriate new update laws for the estimators of the uncertain parameters are required, such that the estimators can be successfully integrated with the internal model principle. Furthermore, the changing supply function technique for iISS systems is utilized to deal with the iISS inverse dynamics. With the proposed controller, the closed‐loop system is globally asymptotically stable, and the disturbance is globally rejected. Two simulation examples are finally presented to show the effectiveness of the proposed control scheme and the practical relevance of our work. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
基于干扰观测器的一类不确定非线性系统鲁棒H控制   总被引:1,自引:0,他引:1  
为了降低控制器对干扰的要求,基于干扰观测器提出一类多输入多输出不确定非线性系统的鲁棒H∞控制方法.将系统的内部不确定性和外部干扰组成复合干扰,设计基于小波神经网络的复合干扰观测器,并提出干扰观测器的参数调节方案使观测器能以高精度逼近复合干扰.同时在控制器中引入鲁棒控制项用来抑制观测器误差给系统带来的影响,所设计的控制器能使系统的跟踪误差小于一个给定的性能指标.最后给出一个仿真算例验证了本控制方案的有效性.  相似文献   

9.
ABSTRACT

In this paper, we apply the active disturbance rejection control, an emerging control technology, to output-feedback stabilisation for a class of uncertain multi-input multi-output nonlinear systems with vast stochastic uncertainties. Two types of extended state observers (ESO) are designed to estimate both unmeasured states and stochastic total disturbance which includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance without requiring the statistical characteristics, uncertain nonlinear interactions between subsystems, and uncertainties caused by the deviation of control parameters from their nominal values. The estimations decouple approximately the system after cancelling stochastic total disturbance in the feedback loop. As a result, we are able to design an ESO-based stabilising output-feedback and prove the practical mean square stability for the closed-loop system with constant gain ESO and the asymptotic mean square stability with time-varying gain ESO, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output-feedback control scheme.  相似文献   

10.
This paper focuses on the design of the standard observer in discrete-time nonlinear stochastic systems subject to random data loss. By the assumption that the system response is incrementally bounded, two sufficient conditions are subsequently derived that guarantee exponential mean-square stability and fast convergence of the estimation error for the problem at hand. An efficient algorithm is also presented to obtain the observer gain. Finally, the proposed methodology is employed for monitoring the Continuous Stirred Tank Reactor (CSTR) via a wireless communication network. The effectiveness of the designed observer is extensively assessed by using an experimental tested-bed that has been fabricated for performance evaluation of the over wireless-network estimation techniques under realistic radio channel conditions.  相似文献   

11.
The extended state observer first proposed by Jingqing Han in [J.Q. Han, A class of extended state observers for uncertain systems, Control Decis. 10 (1) (1995) 85-88 (in Chinese)] is the key link toward the active disturbance rejection control that is taking off as a technology after numerous successful applications in engineering. Unfortunately, there is no rigorous proof of convergence to date. In this paper, we attempt to tackle this long unsolved extraordinary problem. The main idea is to transform the error equation of objective system with its extended state observer into a asymptotical stable system with a small disturbance, for which the effect of total disturbance error is eliminated by the high-gain.  相似文献   

12.
In this paper,the adaptive fuzzy tracking control is proposed for a class of multi-input and multioutput(MIMO)nonlinear systems in the presence of system uncertainties,unknown non-symmetric input saturation and external disturbances.Fuzzy logic systems(FLS)are used to approximate the system uncertainty of MIMO nonlinear systems.Then,the compound disturbance containing the approximation error and the timevarying external disturbance that cannot be directly measured are estimated via a disturbance observer.By appropriately choosing the gain matrix,the disturbance observer can approximate the compound disturbance well and the estimate error converges to a compact set.This control strategy is further extended to develop adaptive fuzzy tracking control for MIMO nonlinear systems by coping with practical issues in engineering applications,in particular unknown non-symmetric input saturation and control singularity.Within this setting,the disturbance observer technique is combined with the FLS approximation technique to compensate for the efects of unknown input saturation and control singularity.Lyapunov approach based analysis shows that semi-global uniform boundedness of the closed-loop signals is guaranteed under the proposed tracking control techniques.Numerical simulation results are presented to illustrate the efectiveness of the proposed tracking control schemes.  相似文献   

13.
为了解决非线性扩张状态观测器(NLESO)对大幅度扰动估计能力有限的问题,本文提出一种线性/非线性切换扩张状态观测器.首先分析了非线性扩张状态观测器对大幅度扰动估计能力有限的原因,然后提出在NLESO的非线性区间引入一段线性扩张状态观测器(LESO)弥补NLESO的缺陷,其次从理论上证明了提出的线性/非线性切换扩张状态观测器的收敛性.最后,通过数值仿真验证了提出的线性/非线性切换扩张状态观测器的可行性.  相似文献   

14.
基于干扰观测器的非线性不确定系统自适应滑模控制   总被引:2,自引:0,他引:2  
本文研究了一类基于非线性干扰观测器的多输入多输出非线性不确定系统的边界层自适应滑模控制方法并应用于近空间飞行器高精度姿态控制.考虑系统存在不确定性和外部干扰上界未知的情况,设计了基于干扰观测器的边界层自适应滑模控制器,以消除传统滑模控制中的"抖振"现象,使跟踪误差趋近于零.同时,利用李雅普洛夫方法严格证明了闭环系统的稳定性.最后将所研究的自适应滑模控制方法,应用于某近空间飞行器的姿态控制中,仿真结果表明在不确定性和外部干扰作用下能保证姿态控制的稳定性,对参数不确定具有较好的鲁棒性.  相似文献   

15.
遥操作系统受到不同类型的不确定性因素影响, 这些不确定性会降低系统的透明性, 甚至会使得系统不稳定. 本文提出了一种带干扰观测器的自适应控制器(adaptive controller with disturbance observer, ACWDO) 用来处理遥操作系统中同时受到的外部干扰和内部动力学参数不确定性. 首先建立了受外部干扰的遥操作系统的非线性动力学模型; 然后分别对主机器人和从机器人设计非线性干扰观测器用来对外部干扰进行估计和补偿; 之后在干扰观测器基础之上分别对主机器人和从机器人设计自适应控制器用来处理内部不确定的动力学参数; 最后再将所设计的ACWDO融入到四通道遥操作系统结构中. 理论分析和仿真结果表明, 所设计的控制器可以取得良好的位置跟踪和力跟踪效果, 确保了遥操作系统的透明性.  相似文献   

16.
针对下肢外骨骼在轨迹跟踪时对内部参数扰动和外界干扰较为敏感的特性,设计一种基于非线性干扰观测器的下肢外骨骼机器人滑模控制策略。首先建立下肢外骨骼上楼梯的动力学模型,分析其动力学特性;其次设计非线性干扰观测器,对下肢系统的不确定性和外部干扰进行观测;在此基础上,为保证系统轨迹跟踪误差的收敛性和减弱抖振,设计了低通滤波的滑模控制器,根据李雅普诺夫稳定性理论证明了下肢系统的稳定性;最后通过仿真与实验验证,该控制策略能够有效克服多种因素引起的干扰,改善系统的控制性能,提高系统的稳定性。  相似文献   

17.
基于扰动观测器的不确定非线性系统非奇异终端滑模控制   总被引:1,自引:0,他引:1  
针对一类SISO 非线性不确定系统, 提出一种基于扰动观测器的非奇异终端滑模(NTSM) 控制策略. 在保证控制器非奇异性的情况下, 设计了一种改进的NTSM函数, 理论分析证明了到达滑模面的时间小于传统NTSM控制算法的到达时间. 同时为了消除系统扰动量对控制器抖振的影响, 设计了一种线性扰动观测器以降低滑模切换项的增益, 并采用Sigmoid 函数来替代传统的符号函数. 仿真结果表明了所得结论的正确性和有效性.  相似文献   

18.
For a multi-input multi-output (MIMO) nonlinear system, the existing disturbance observer-based control (DOBC) only provides solutions to those whose disturbance relative degree (DRD) is higher than or equal to its input relative degree. By designing a novel disturbance compensation gain matrix, a generalised nonlinear DOBC method is proposed in this article to solve the disturbance attenuation problem of the MIMO nonlinear system with arbitrary DRD. It is shown that the disturbances are able to be removed from the output channels by the proposed method with appropriately chosen control parameters. The property of nominal performance recovery, which is the major merit of the DOBCs, is retained with the proposed method. The feasibility and effectiveness of the proposed method are demonstrated by simulation studies of both the numerical and application examples.  相似文献   

19.
This paper investigates the problem of global output feedback stabilisation for a class of upper triangular stochastic nonlinear systems which are neither necessarily feedback linearisable nor affine in the control input. Based on the adding of a power integrator technique and homogeneous domination approach, an output feedback controller is explicitly constructed to ensure that the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability. A simulation example is provided to demonstrate the effectiveness of the design scheme.  相似文献   

20.
An adaptive dynamic surface control (DSC) approach using fuzzy approximation and nonlinear disturbance observer (NDO) for uncertain nonlinear systems in the presence of input saturation, output constraint and unknown external disturbances is proposed in this paper. The issue of input saturation is addressed by introducing a lower bound assumption on the approximation function of saturation. The output constraint is handled by introducing an appropriate barried Lyapunov function. The nonlinear disturbance observer (NDO) is employed to estimate the unknown unmatched disturbances. It is manifested that the ultimately bounded convergence of all the variables in the closed-loop system is guaranteed and the tracking error can be made farely small by tuning the design parameters. Finally, two simulation examples illustrate the effectiveness and feasibility of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号