首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Mechanical properties of SMA W (shielded metal arc welding) weld metal ( yield strength higher than 900 MPa ) with systemazic additions of copper ( up to 1.48 wt% ) were tested, The microstructure and precipitates in different regions were analyzed by optical microscope and transmission electron microscope, The results indicate that copper improves the low temperature toughness of weld metal when the copper content is low and reaches the peak value 48 J ( at - 50℃ ) with 0. 2 wt% copper additions. When the content is high the copper precipitates as 8-Cu phase in the reheat zone of middle beads. These precipitates improve the strength of the weld metal evidently ( yield strength up to 975 MPa) without obvious effect on the low temperature toughness. The copper within 1.1 wt% content can improve the strength without toughness loss.  相似文献   

2.
3.
The different copper coatings with thickness varying from 0.3 lain to 1.5 lain were deposited on carbon fibers using either eleetroless plating or electroplating method. The coated fibers were chopped and composites were fabricated with melting aluminum at 700 ℃. The effect of the copper layer on the microstructure in the system was discussed. The results show that the copper layer has fully reacted with aluminum matrix, and the intermetallic compound CuAl2 forms through SEM observation and XRD, EDX analysis. The results of tensile tests indicate that composites fabricated using carbon fibers with 0.7-1.1 lain copper coating perform best and the composites turn to more brittle as the thickness of copper coating increases. The fracture surface observation exhibits good interface bonding and ductility of the matrix alloy when the thickness of copper coating is about 0.7-1.1 μm.  相似文献   

4.
The Al-based alloy with equiaxed grains was directly produced in the industrial aluminum electrolyzer. The varieties of grain features and grain sizes vs the re-melting times of this alloy were investigated. The grain features and mechanical properties of A356 alloy made from this alloy during the several re-melted times were also studied. The results show that the Al-based alloy after re-melted for 6 times, and A356 after re-melted for 3 times, both remained and refined grains and A356 alloy could achieve favorable mechanical properties. All these should be attributed to the electrolyzing procedure, in which nucleates, such as Al3Ti, are distributed fully and even in the based alloy. Producing Al-based alloy in the industrial electrolyzer provides a new, efficient and practical grain-refining route.  相似文献   

5.
6.
7.
Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to synthesize MWNTs reinforced aluminum composites. In hot press sintered MWNTs/Al composites, MWNTs agglomerates distribute along aluminum powders and have low bonding strength with aluminum. But MWNTs agglomerates distribute evenly in the squeeze cast MWNTs/Al composites. Some dispersed nanotubes bond well with aluminum matrix and few dislocations can be found in the nanotube areas, which implies little thermal residual stress in squeeze cast MWNTs/Al composites. This indicates that the strengthen mechanisms in nanometer sized MWNTs/Al composites may be different from that in micrometer sized whisker composites.  相似文献   

8.
孙咸 《现代焊接》2012,(1):22-24,27
本文介绍了焊缝金属强度匹配方式和类型,分析了焊缝金属强度匹配方式的工艺焊接性,列举了焊缝金属强度匹配应用实例。结果表明,焊缝的强度匹配方式有5种,拉伸试样断口部位各异。5种焊缝的强度匹配方式中,低强匹配和组合匹配方式的工艺焊接性得到改善,施工成本降低,接头的抗脆断性能能够控制;等韧性匹配的工艺焊接性取决于所用钢种和行业规定,施工条件较严格,成本较高,接头的抗脆断性能比较优良。14MnM oNbB钢低匹配专用焊条J506DP,可降低14MnMoNbB钢的临界预热温度50~70℃,改善了该钢的工艺焊接性;低匹配焊缝接头的强度已与母材等强,接头的安全性符合设计要求。组合匹配接头在综采支架立柱中应用表明,可使30MnNbXt钢在室温下焊接时不产生裂纹,而且在焊后状态下的使用性能完全符合产品技术条件要求。  相似文献   

9.
10.
11.
采用Nd:YAG激光对强度为800MPa,厚度为1.2mm的TRIP钢板进行焊接.研究焊接速度对焊缝外观和截面成形的影响及接头的组织特点、硬度、强度和成形能力.激光功率相同,焊接速度较低时焊缝易产生气孔,速度较高时易发生飞溅;焊接速度对焊缝熔深及熔宽也有影响.焊缝组织主要由马氏体构成,从焊缝、热影响区到母材,组织中马氏体含量下降,接头的最高硬度出现在焊缝或热影响区.在平行于焊缝方向,焊接接头的抗拉强度高于母材,垂直于焊缝方向,接头的抗拉强度与母材相当.由于焊缝中出现马氏体,接头的塑性和韧性降低,板材的冲压成形能力下降.  相似文献   

12.
Abstract

This paper aims to evaluate the formability of tailor welded blanks of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets. In this work, bead on plate butt joints of 2·5 mm DP600 and 1·2 mm TRIP700 steel sheets were performed using CO2 laser beam welding. Microhardness measurements and transverse tensile testing were carried out to characterise the welds. The formability of base metals and welds were investigated by standard Erichsen test. In a perpendicular tensile test to the weld line, all specimens were fractured at the TRIP base metal, and the strengths were somewhat higher than those of base metal. There was a significant reduction in formability caused by welding of the DP600/TRIP700 steel sheets, and the formability increased with increasing welding speed.  相似文献   

13.
采用CO2激光对抗拉强度为600MPa,厚度1.4mm的DP钢进行焊接.研究焊接速度对焊缝外观和截面成形的影响、接头的组织特点、硬度、强度和成形能力.结果表明,激光功率相同,焊接速度较低时焊缝易产生气孔,焊接速度较高时易发生飞溅;焊接速度对焊缝熔深及熔宽也有影响.焊缝区组织主要由马氏体构成,从焊缝、焊接热影响区到母材,组织中马氏体含量下降,接头的最高硬度出现在焊缝或热影响区.在平行于焊缝方向,焊接接头的抗拉强度高于母材,垂直于焊缝方向,接头的抗拉强度与母材相当.由于焊缝出现马氏体组织,接头的塑性和韧性降低,板材的冲压成形能力下降.  相似文献   

14.
臧昊  胡连海  黄坚 《电焊机》2012,42(5):32-36
与传统电弧焊相比,激光焊接厚板优势明显。采用纯激光焊和激光电弧复合焊等多道焊接技术实现了28 mm厚10Ni3CrMoV钢的高效焊接,采用光学显微镜分析焊缝、热影响区和焊缝重叠区的组织,激光复合焊缝组织主要为针状铁素体,纯激光焊缝、粗晶区和细晶区组织主要为板条马氏体,激光复合焊缝重叠区组织为粒状贝氏体+马氏体,纯激光焊缝和激光复合焊缝重叠区组织为马氏体+少量粒状贝氏体。测试了焊接接头的力学性能,结果表明,激光复合焊缝金属的冲击韧性较高,焊接接头的抗拉强度和屈服强度与母材相当,延伸率略小于母材,焊接接头的最大硬度小于360 HV,弯曲性能合格。  相似文献   

15.
选取1.0mm和1.5mm厚的B170P1高强度钢为研究对象,采用不同激光焊接工艺参数对其进行激光拼焊,焊后对焊接接头进行金相检验及显微硬度测试,分析了母材、焊缝及热影响区的微观组织特性;对焊后试样进行拉伸试验,研究了激光焊接工艺对力学性能的影响.结果表明,焊接功率的增加造成焊缝中粒状贝氏体数量增多,材料韧性变差;焊接速度大时焊缝中晶界铁素体以条状居多,焊接速度小时焊缝中主要是块状铁素体;激光热输入较小时,晶粒尺寸随热输入的增加增长迅速,调节热输入大小可抑制晶粒增长.  相似文献   

16.
惠媛媛  张敏  庄明祥  李杰  樊浩 《焊接学报》2019,40(8):104-108
为了进一步探索ULCB钢的焊接性能,采用真空电子束穿透焊不同束流强度对14 mm钢板对接接头进行了焊接,通过焊缝形貌比较,束流强度为100 mA时,接头焊缝成形最好,选取该接头做了拉伸、硬度、冲击试验及金相组织分析.结果表明,拉伸试样的断裂区域在母材区,抗拉强度为761 MPa、屈服强度为669 MPa,硬度范围在270~330 HV;冲击试样的断裂区域在热影响区,焊缝区平均冲击功为288 J,热影响区平均冲击功为273 J;接头显微组织中,焊缝区和热影响区产生了α'马氏体相,使焊缝区和热影响区产生相变强化,导致焊接接头的强度和硬度均高于母材.  相似文献   

17.
TRIP800高强度钢激光焊工艺   总被引:1,自引:0,他引:1  
针对TRIP800高强度钢进行激光焊接工艺研究。实验结果表明:1.8 mm厚的TRIP800高强度钢在纯度大于99.9%的氩气保护下,采用光纤激光器焊接,在焊接速度7 mm/s、激光功率570 W、离焦量0 mm的工艺参数条件下可以获得优质的焊缝;焊接接头的抗拉强度660 MPa,断裂方式为塑性断裂。最佳工艺参数条件下的焊缝硬度呈现"M"形分布,接头的最高硬度出现在热影响区,焊缝区硬度较高,母材硬度最低。  相似文献   

18.
Bead-on-plate butt joints of 2.5 mm hot rolled DP600/DP600 and 1.2 mm cold rolled TRIP700/TRIP700 steel sheets were performed using 6 kW CO2 laser beam welding. The welding speed ranged from 1.5 to 3.0 and from 2.1 to 3.9 m/min in DP/DP and TRIP/TRIP steel weldments respectively. A top surface helium gas was used as a shielding gas at a flow rate of 20 l/min. Metallographic examinations and transverse tensile testing (DIN EN 895: 1995) were carried out to characterize the weldments. The formability of base metals and weldments were investigated by standard Erichsen test (DIN EN ISO 20482). It was found that the uniaxial plastic behavior of both DP600 and TRIP700 base metals was in agreement with Swift and modified Mecking–Kocks models respectively. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal however the strengths were somewhat higher than those of base metal. There was a significant reduction in formability caused by welding of both DP/DP and TRIP/TRIP steel weldments and the formability has been improved with the increase of the welding speed.  相似文献   

19.
针对6 mm厚的921A钢板,采用激光-MAG复合焊接工艺进行对接焊试验,并对焊接接头的显微组织、硬度、拉伸性能、耐腐蚀性能等进行了分析。结果表明,采用激光-MAG复合焊工艺可获得成形连续美观的焊接接头,无未熔合、裂纹、气孔等缺陷;焊缝组织为针状铁素体、少量沿晶界析出的先共析铁素体及长条状贝氏体,热影响区组织为马氏体;焊接接头的拉伸性能和冲击性能均符合国家标准要求,焊缝强度高于母材,但塑韧性低于母材。峰值硬度在热影响区,为315 HV,焊缝硬度约为280 HV,符合最高硬度不得超过410 HV的规定。焊缝耐电化学腐蚀性能最强,母材次之,热影响区最低;激光和MAG电弧2种热源共同作用区域的组织分布更加均匀,硬度及耐腐蚀性能较激光单独作用区域有了明显改善。 创新点: 采用激光-MAG复合焊实现了6 mm厚度921A钢板无缺陷对接焊的一次焊接成形。焊缝晶粒更加细化,分布更加均匀;焊缝抗拉强度、硬度、电化学腐蚀性能均高于母材,冲击吸收能量满足船级社要求。  相似文献   

20.
Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenoas welding and wire feed welding are conducted on 4 mm thick 5083- H321 aluminum alloy sheets at different welding variables. The mechanical properties and microstructure characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Experimental results indicate that both the tensile strength and hardness of laser beam welds are affected by the constitution of filler material, except the yield strength. The soften region of laser beam welds is not in the heat-affected zone ( HAZ ). The tensile fracture of laser beam welded specimens takes place in the weld zone and close to the weld boundary because of different filler materials. Some pores are found on the fracture face, including hydrogen porosities and blow holes, but these pores have no influence on the tensile strength of laser beam welds. Tensile strength values of laser beam welds with filler wire are up to 345.57 MPa, 93% of base material values, and yield strengths of laser beam welds are equivalent to those of base metal (264. 50 MPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号