首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Despite the fact that we live in a 3D world and macroscale engineering is 3D, conventional submillimeter‐scale engineering is inherently 2D. New fabrication and patterning strategies are needed to enable truly 3D‐engineered structures at small size scales. Here, strategies that have been developed over the past two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning are reviewed. A focus is the strategy of self‐assembly, specifically in a biologically inspired, more deterministic form, known as self‐folding. Self‐folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self‐assembly approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed.

  相似文献   


2.
Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number Ce), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery.  相似文献   

3.
Bending and folding techniques such as origami and kirigami enable the scale‐invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro‐ and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer‐scale dimensions. Two materials are studied as model systems: ultrathin SiO2 and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ‐scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer‐scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer‐scale actuators and robotics.  相似文献   

4.
The exquisite structure–function correlations observed for native protein filaments have prompted research into the design of simpler peptide-based analogues that can be tailored for specific applications as synthetic filamentous nanomaterials. Sequence-structure correlations that have been established from analysis of native proteins have been previously adapted to create a supramolecular folding code based on simple design principles. While successful, the supramolecular folding code has not been critically examined in terms of the relationship between the proposed models and experimentally determined structures. Recent cryo-EM analyses of peptide-based filaments at near-atomic resolution offers the opportunity to compare the predictions of the supramolecular folding code to the resultant atomic models. The results provide insight into the limitations of the folding code and suggest an approach to refine the design of peptide-based filaments.  相似文献   

5.
Dip‐pen nanodisplacement lithography (DNL) is a versatile scanning probe‐based technique that can be employed for fabricating ultrafine 3D polymer brushes under ambient conditions. Many fundamental studies and applications require the large‐area fabrication of 3D structures. However, the fabrication throughput and uniformity are still far from satisfactory. In this work, the molecular displacement mechanism of DNL is elucidated by systematically investigating the synergistic effect of z extension and contact time. The in‐depth understanding of molecular displacement results in the successful achievement of ultrafine control of 3D structures and high‐speed patterning at the same time. Remarkably, one can prepare arbitrary 3D polymer brushes on a large area (1.3 mm × 1.3 mm), with <5% vertical and lateral size variations, and a patterning speed as much as 200‐fold faster than the current state‐of‐the‐art.  相似文献   

6.
SUPREX (stability of unpurified proteins from rates of H/D exchange) is a new H/D exchange- and mass spectrometry-based technique for the measurement of protein folding free energies (i.e., DeltaG values) and protein folding m values (i.e., deltaDeltaG/delta[denaturant]). Robust protocols for the acquisition and analysis of SUPREX data have been established and shown to be useful for the analysis of a number of different protein systems. Here we report on the SUPREX behavior of a special class of proteins that are not amenable to conventional SUPREX analyses using previously established protocols. This class of proteins includes protein systems that require an extended time to reach a folding/unfolding equilibrium in chemical denaturant-induced equilibrium unfolding experiments. As part of this work we use ubiquitin as a model system to highlight the complications that can arise in the conventional SUPREX analysis of such protein systems, and we describe a modified SUPREX protocol that can be used to eliminate these complications.  相似文献   

7.
Compared to their 2D counterparts, 3D micro/nanostructures show larger degrees of freedom and richer functionalities; thus, they have attracted increasing attention in the past decades. Moreover, extensive applications of 3D micro/nanostructures are demonstrated in the fields of mechanics, biomedicine, optics, etc., with great advantages. However, the mainstream micro/nanofabrication technologies are planar ones; therefore, they cannot be used directly for the construction of 3D micro/nanostructures, making 3D fabrication at the micro/nanoscale a great challenge. A promising strategy to overcome this is to combine the state‐of‐the‐art planar fabrication techniques with the folding method to produce 3D structures. In this strategy, 2D components can be easily produced by traditional planar techniques, and then, 3D structures are constructed by folding each 2D component to specific orientations. In this way, not only will the advantages of existing planar techniques, such as high precision, programmable patterning, and mass production, be preserved, but the fabrication capability will also be greatly expanded without complex and expensive equipment modification/development. The goal here is to highlight the recent progress of the folding method from the perspective of principles, techniques, and applications, as well as to discuss the existing challenges and future prospectives.  相似文献   

8.
Despite the tremendous potential of bioprinting techniques toward the fabrication of highly complex biological structures and the flourishing progress in 3D bioprinting, the most critical challenge of the current approaches is the printing of hollow tubular structures. In this work, an advanced 4D biofabrication approach, based on printing of shape‐morphing biopolymer hydrogels, is developed for the fabrication of hollow self‐folding tubes with unprecedented control over their diameters and architectures at high resolution. The versatility of the approach is demonstrated by employing two different biopolymers (alginate and hyaluronic acid) and mouse bone marrow stromal cells. Harnessing the printing and postprinting parameters allows attaining average internal tube diameters as low as 20 µm, which is not yet achievable by other existing bioprinting/biofabrication approaches and is comparable to the diameters of the smallest blood vessels. The proposed 4D biofabrication process does not pose any negative effect on the viability of the printed cells, and the self‐folded hydrogel‐based tubes support cell survival for at least 7 d without any decrease in cell viability. Consequently, the presented 4D biofabrication strategy allows the production of dynamically reconfigurable architectures with tunable functionality and responsiveness, governed by the selection of suitable materials and cells.  相似文献   

9.
Diatoms produce diverse three-dimensional regular silica structures with nanometer to micrometer dimensions and hold considerable promise for biological and biomimetic fabrication of nanostructured materials and devices. In the present work, we describe the ultrastructural characterization of porous structures in diatom biosilica and discuss their potential as membrane filters for diffusion based separations. The frustules of two centric diatom species, Coscinodiscus sp. and Thalassiosira eccentrica, were investigated using scanning electron microscopy and atomic force microscopy. Their morphological features, including pore size, shape, porosity, and pore organization, are described. We observed that although pore organization in frustules of Thalassiosira eccentrica and Coscinodiscus sp. is in reverse order, a striking commonality is the size range of the smallest pores in both species (around 40 nm). The consensus lower pore size suggests that frustule valves have a common function at this size of excluding viruses or other deleterious particles, and the pore size and organization is optimized for this purpose. We suggest and implement an experimental approach to study the potential of diatom frustules for diffusive separation of molecular or nanoparticular components in microfluidic or lab-on-a-chip environments.  相似文献   

10.
Large-area graphene substrates provide a promising lab bench for synthesizing, manipulating, and characterizing low-dimensional materials, opening the door to high-resolution analyses of novel structures, such as two-dimensional (2D) glasses, that cannot be exfoliated and may not occur naturally. Here, we report the accidental discovery of a 2D silica glass supported on graphene. The 2D nature of this material enables the first atomic resolution transmission electron microscopy of a glass, producing images that strikingly resemble Zachariasen's original 1932 cartoon models of 2D continuous random network glasses. Atomic-resolution electron spectroscopy identifies the glass as SiO(2) formed from a bilayer of (SiO(4))(2-) tetrahedra and without detectable covalent bonding to the graphene. From these images, we directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order. Ab initio calculations indicate that van der Waals interactions with graphene energetically stabilizes the 2D structure with respect to bulk SiO(2). These results demonstrate a new class of 2D glasses that can be applied in layered graphene devices and studied at the atomic scale.  相似文献   

11.
In recent years metal-assisted chemical etching (MaCE) of silicon, in which etching is confined to a small region surrounding metal catalyst templates, has emerged as a promising low cost alternative to commonly used three-dimensional (3D) fabrication techniques. We report a new methodology for controllable folding of 2D metal catalyst films into 3D structures using MaCE. This method takes advantage of selective patterning of the catalyst layer into regions with mismatched characteristic dimensions, resulting in uneven etching rates along the notched boundary lines that produce hinged 2D templates for 3D folding. We explore the dynamics of the folding process of the hinged templates, demonstrating that the folding action combines rotational and translational motion of the catalyst template, which yields topologically complex 3D nanostructures with intimately integrated metal and silicon features.  相似文献   

12.
Two-dimensional (2D) crystals have a multitude of forms,including semi-metals,semiconductors,and insulators,which are ideal for assembling isolated 2D atomic materials to create van der Waals (vdW) heterostructures.Recently,artificially-stacked materials have been considered promising candidates for nanoelectronic and optoelectronic applications.In this study,we report the vertical integration of layered structures for the fabrication of prototype non-volatile memory devices.A semiconducting-tungsten-disulfide-channel-based memory device is created by sandwiching high-density-of-states multi-layered graphene as a carrier-confining layer between tunnel barriers of hexagonal boron nitride (hBN) and silicon dioxide.The results reveal that a memory window of up to 20 V is opened,leading to a high current ratio (>103) between programming and erasing states.The proposed design combination produced layered materials that allow devices to attain perfect retention at 13% charge loss after 10 years,offering new possibilities for the integration of transparent,flexible electronic systems.  相似文献   

13.
By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel‐boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle‐to‐ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.  相似文献   

14.
Ninghai Su  Miao Liu  Feng Liu 《Nano Research》2011,4(12):1242-1247
Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be ∼380 meV/? (or about 800 meV per edge atom) and ∼50 meV/? (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.   相似文献   

15.
Self-folding of complex origami-inspired structures from flat states allows for the incorporation of a multitude of surface-related functionalities into the final 3D device. Several self-folding techniques have therefore been developed during the last few years to fabricate such multi-functional devices. The vast majority of such approaches are, however, limited to simple folding sequences, specific materials, or large length scales, rendering them inapplicable to microscale (meta)materials and devices with complex geometries, which are often made from materials other than the ones for which these approaches are developed. Here, we propose a mechanical self-folding technique that only requires global stretching for activation, is applicable to a wide range of materials, allows for sequential self-folding of multi-storey constructs, and can be downscaled to microscale dimensions. We combined two types of permanently deforming kirigami elements, working on the basis of either multi-stability or plastic deformation, with an elastic layer to create self-folding basic elements. The folding angles of these elements could be controlled using the kirigami cut patterns as well as the dimensions of the elastic layer and be accurately predicted using our computational models. We then assembled these basic elements in a modular manner to create multiple complex 3D structures (e.g., multi-storey origami lattices) in different sizes including some with microscale feature sizes. Moreover, starting from a flat state enabled us to incorporate not only precisely controlled, arbitrarily complex, and spatially varied micropatterns but also flexible electronics into the self-folded 3D structures. In all cases, our computational models could capture the self-folding behavior of the assemblies and the strains in the connectors of the flexible electronic devices, thereby guiding the rational design of our specimens. This approach has numerous potential applications including fabrication of multi-functional and instrumented implantable medical devices, steerable medical instruments, and microrobots.  相似文献   

16.
Relevant parameters for non-covalent protein functionalization of carbon nanotubes are explored. Multiwalled carbon nanotubes are carboxylated and functionalized with metalloproteins. Using atomic force microscopy (AFM) we quantitatively determine that coverage with nitrogen-doped multiwalled carbon nanotubes is superior compared to coverage with un-doped multiwalled carbon nanotubes, due to enhanced carboxylation. Conformational analysis using a combination of AFM, antibody binding assays, circular dichroism and UV-visible spectroscopy demonstrates that the metalloproteins retain their native structure when adsorbed to nitrogen-doped multiwalled carbon nanotubes irrespective of their size, charge or folding motif.  相似文献   

17.
Building materials from the atom up is the pinnacle of materials fabrication. Until recently the only platform that offered single‐atom manipulation was scanning tunneling microscopy. Here controlled manipulation and assembly of a few atom structures are demonstrated by bringing together single atoms using a scanning transmission electron microscope. An atomically focused electron beam is used to introduce Si substitutional defects and defect clusters in graphene with spatial control of a few nanometers and enable controlled motion of Si atoms. The Si substitutional defects are then further manipulated to form dimers, trimers, and more complex structures. The dynamics of a beam‐induced atomic‐scale chemical process is captured in a time‐series of images at atomic resolution. These studies suggest that control of the e‐beam‐induced local processes offers the next step toward atom‐by‐atom nanofabrication, providing an enabling tool for the study of atomic‐scale chemistry in 2D materials and fabrication of predefined structures and defects with atomic specificity.  相似文献   

18.
The creation of three‐dimensional (3D) structures from two‐dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out‐of‐plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials.  相似文献   

19.
Xiao  Zhangru  Qiao  Jingsi  Lu  Wanglin  Ye  Guojun  Chen  Xianhui  Zhang  Ze  Ji  Wei  Li  Jixue  Jin  Chuanhong 《Nano Research》2017,10(7):2519-2526
Phosphorus atomic chains,the narrowest nanostructures of black phosphorus (BP),are highly relevant to the in-depth development of BP-based one-dimensional (1D) nano-electronics components.In this study,we report a top-down route for the preparation of phosphorus atomic chains via electron beam sculpturing inside a transmission electron microscope (TEM).The growth and dynamics (i.e.,rupture and edge migration) of 1D phosphorus chains are experimentally captured for the first time.Furthermore,the dynamic behavior and associated energetics of the as-formed phosphorus chains are further investigated by density functional theory (DFT) calculations.It is hoped that these 1D BP structures will serve as a novel platform and inspire further exploration of the versatile properties of BP.  相似文献   

20.
It is shown that tilt grain boundaries (GBs) in bilayer 2D crystals of the transition metal dichalcogenide WS2 can be atomically sharp, where top and bottom layer GBs are located within sub‐nanometer distances of each other. This expands the current knowledge of GBs in 2D bilayer crystals, beyond the established large overlapping GB types typically formed in chemical vapor deposition growth, to now include atomically sharp dual bilayer GBs. By using atomic‐resolution annular dark‐field scanning transmission electron microscopy (ADF‐STEM) imaging, different atomic structures in the dual GBs are distinguished considering bilayers with a 3R (AB stacking)/2H (AA′ stacking) interface as well as bilayers with 2H/2H boundaries. An in situ heating holder is used in ADF‐STEM and the GBs are stable to at least 800 °C, with negligible thermally induced reconstructions observed. Normal dislocation cores are seen in one WS2 layer, but the second WS2 layer has different dislocation structures not seen in freestanding monolayers, which have metal‐rich clusters to accommodate the stacking mismatch of the 2H:3R interface. These results reveal the competition between maintaining van der Waals bilayer stacking uniformity and dislocation cores required to stitch tilted bilayer GBs together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号