首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用原位合成法制备了镍-氧化镍/多孔碳纳米片(Ni-NiO/PCNs)负极材料,对比分析了氯化钠模板、退火温度和退火时间对负极材料物相组成、显微形貌和电化学性能的影响。结果表明,Ni/PCNs、Ni-NiO/C和Ni-NiO/PCNs负极材料都主要含有镍和无定型C相,且后2种负极材料还含有氧化镍相;300 ℃/4 h为Ni-NiO/PCNs负极材料适宜的退火工艺,此时Ni-NiO/PCNs负极材料中Ni-NiO粒子分散性较好且保持着三维片层结构,平均尺寸约为27 nm,Ni-NiO实现了对无定型C的包裹;退火时间过长(6 h)会使得镍粒子过氧化且发生团聚,而温度过高(400 ℃)会使得粒子以团聚为主,三维片层状结构消失。电流密度为1 A/g、循环5 000圈后Ni-NiO/PCNs负极材料的放电比容量为235 mA·h/g,此时的放电比容量约为首圈放电比容量的83.93%;Ni-NiO/C和Ni/PCNs负极材料在充放电循环过程中以及循环5 000圈后的放电比容量和容量保持率都明显低于Ni-NiO/PCNs负极材料,Ni-NiO/PCNs负极材料具有更好的循环稳定性,这主要与其具有独特的多孔三维片层结构有关。  相似文献   

2.
In this paper, we have constructed and analyzed the field emission behavior of a single vertically aligned free standing carbon nanotube (CNT) with a gate electrode in order to verify the feasibility of using a single CNT as the low-voltage field emission electron source. The single vertically aligned CNT with gate electrode was fabricated by combining optical lithography, electron beam lithography (EBL) and inductively coupled plasma chemical vapor deposition (ICP-CVD) processes. A self-aligned process with a single mask was utilized to define the gated structure and the nano-size catalyst for CNT growth. A single vertically aligned CNT was then grown within the gate hole by ICP-CVD. The length-to-diameter ratio of CNT could be varied by adjusting the e-beam exposure time, and the CNT height was controlled to equal to the gate-to-cathode spacing (800) nm in one gated device and less than the spacing (530 nm) in another device. The field emission characteristics of the integrated gate electrode devices were then measured under a scanning electron microscopy (SEM) with a three-axis nano-positioning device. The turn-on field of the gated devices with 800 and 530 nm height CNT were 2.77 and 3.57 V/μm, respectively, with applying − 10 V gate voltage, and 0 V anode voltage.  相似文献   

3.
Dense, vertically aligned multiwall carbon nanotubes were synthesized on TiN electrode layers for infrared sensing applications. Microwave plasma-enhanced chemical vapor deposition and Ni catalyst were used for the nanotubes synthesis. The resultant nanotubes were characterized by SEM, AFM, and TEM. Since the length of the nanotubes influences sensor characteristics, we study in details the effects of changing Ni and TiN thickness on the physical properties of the nanotubes. In this paper, we report the observation of a threshold Ni thickness of about 4 nm, when the average CNT growth rate switches from an increasing to a decreasing function of increasing Ni thickness, for a process temperature of 700°C. This behavior is likely related to a transition in the growth mode from a predominantly “base growth” to that of a “tip growth.” For Ni layer greater than 9 nm the growth rate, as well as the CNT diameter, variations become insignificant. We have also observed that a TiN barrier layer appears to favor the growth of thinner CNTs compared to a SiO2 layer.  相似文献   

4.
《Ceramics International》2021,47(19):26758-26767
Titanium nitride (TiN) is widely used in electrode materials in fast charging/discharging supercapacitors (SCs) due to its outstanding conductivity. However, the low capacitance of the TiN electrode limits its further application in the SCs. Therefore, the reasonable design of the TiN electrode with high electrochemical and mechanical properties is still a challenge. In this paper, the silicon nanowires/titanium nitride electrode (Si NWs/TiN) is prepared by depositing TiN onto the etched Si nanowires by direct current magnetron sputtering. The Si NWs are prepared by etching silicon in 4.8 M HF/0.02 M AgNO3 aqueous solution for different times (5 min, 15 min, 30 min, 60 min). The mechanism of the effect of etched silicon substrate morphology on the electrochemical performance of Si NWs/TiN electrode was studied. As the etching time increases, the differences of the TiN surface structure, lattice defects and surface chemical composition will change the capacitance performance and charge storage mechanism of the Si NWs/TiN electrode. The prepared Si30 NWs/TiN electrode exhibits an outstanding specific capacitance as high as 113.55 F g−1 at a scan rate of 5 mV s−1 with 0.5 M H2SO4 solution as electrolyte. The specific capacitance of the Si30 NWs/TiN electrode is as high as 7.5 times that of the electrode without etching at 100 mV s−1. The Si30 NWs/TiN electrode has an excellent cyclic stability performance, which the electrode has a decay rate of 12.4% after 2000 cycles. This indicates that the electrode has reliable stability. The electrode of the supercapacitor prepared by this method can open up a new way to expand the specific surface area of other transition metal nitride.  相似文献   

5.
The effects of palladium (Pd) catalyst film thickness and ammonia (NH3) in thermal chemical vapor deposition (CVD) growth of carbon nanotubes (CNTs) are systematically compared per the resulting morphologies, Raman spectra and field emission characteristics. The CNT field emitters were tested under identical experimental configurations. Field emission characteristics were described with Fowler-Nordheim field emission theory. Experimental results demonstrate that thermally grown CVD CNTs configured as diode field emitters exhibit low turn-on fields and high emission current density. The work is extended to include the study of gated field emitters or field emission triode, important to achieving high-resolution, full gray-scale imaging for field emission, flat-panel displays. The gated device was fabricated utilizing single-mask, self-aligned gate electrode with conventional integrated-circuit (IC) fabrication process. The CNT-triode showed gate-controlled modulation of emission current where higher gate voltage gives rise to higher anode currents. The triode fabrication process using silicon-on-insulator (SOI) wafers is discussed.  相似文献   

6.
Ni-W/TiN nanocomposite coatings were successfully prepared via pulse electroplating from an electrolyte containing suspended TiN nanoparticles. The effects of applied current density and deposition time on microstructure, morphology, composition, hardness and electrochemical behaviors of the obtained coatings were investigated. Results showed that the current density and deposition time affect remarkably the electrochemical co-deposition process and then the structure and characteristics of the composites. It illustrated that the nanocomposites are uniform, compact and crack-free. The nanocomposites prepared at Ia =?3?A?dm?2 and t?=?20?min had the finest structure, showing a fine and smooth surface. EDS mapping and XPS spectra illustrated that the TiN nanoparticles had been homogeneously dispersed throughout the coating. 2.34?wt% TiN nanoparticles were embedded in Ni–W (68.56?wt% Ni and 29.1?wt%?W) alloy matrix at Ia=?3.0?A?dm?2. The inclusion of TiN nanoparticles in Ni–W could promote the nucleation and cause a distinct microstructural change. The crystallite size was in the range of 11–15?nm. The average roughness value (Ra) is 65.7?nm and 73.8?nm for coating formed at 20?min and 40?min, respectively. The electrochemical measurements illustrated that Ia =?3–5?A?dm?2 and t?=?40–60?min was the optimal operating parameters for the excellent anti-corrosion properties of Ni–W/TiN nanocomposites. The embedded TiN in Ni–W matrix could fill defects then improve its corrosion resistance. This electrodeposited Ni–W/TiN nanocomposites possess excellent hardness and superior corrosion resistance, and is expected to be applied in aggressive environment as a protective coating.  相似文献   

7.
This paper describes a self-aligned fabrication process for diamond gated field emitter array (FEA). Utilizing the non-conformal coverage sputtering conditions of silicon oxide, an interesting “sphere on cone” structure is formed on diamond nano tip array, which is the key point of gate hole opening process. This structure causes shadowing at certain regions of side-wall during Ti / Au gate metal deposition. Removal of “sphere” by wet etching leads to the successful fabrication of a single crystalline diamond gated FEA. Scanning electron microscope observations reveal the fabrication of a uniform emitter array with tip radius of curvature (20 nm) and gate hole (1.4 μm). We also confirmed that no noticeable physical damage exists on tip. In field emission characteristics of the fabricated single crystal diamond gated FEA, gate voltage control of field emission current is realized.  相似文献   

8.
《Diamond and Related Materials》2001,10(9-10):1743-1748
In order to realize high frequency and high power diamond devices, diamond FETs on the hydrogen-terminated diamond surface conductive layer have been fabricated. The fabricated diamond MESFETs show high breakdown voltage and output capability of 1 W mm−1. High transconductance diamond MESFET utilizing a self-aligned gate FET fabrication process has been operated in high frequency for the first time. In the 2 μm gate MESFETs, the obtained cut off frequency fT and maximum frequency of oscillation fmax are 2.2 and 7 GHz, respectively. It is expected that the diamond MESFET with 0.5 μm gate length fabricated by self-aligned gate process shows 8 GHz of fT and 30 GHz of fmax.  相似文献   

9.
The high-k dielectric TiO2/ZrO2 bilayer composite film was prepared on a Si substrate by radio frequency magnetron sputtering and post annealing in N2 at various temperatures in the range of 573 K to 973 K. Transmission electron microscopy observation revealed that the bilayer film fully mixed together and had good interfacial property at 773 K. Metal-oxide-semiconductor capacitors with high-k gate dielectric TiO2/ZrO2/p-Si were fabricated using Pt as the top gate electrode and as the bottom side electrode. The largest property permittivity of 46.1 and a very low leakage current density of 3.35 × 10-5 A/cm2 were achieved for the sample of TiO2/ZrO2/Si after annealing at 773 K.  相似文献   

10.
In this study, Ni/W–TiN composites were fabricated by the pulse current electrodeposition (PCE) method. The effects of TiN concentration on the microstructure, microhardness, and wear properties of the resulting composites were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), microhardness tester, and friction wear testing. Among the four obtained composites, Ni/W–TiN composite prepared at 8 g/L showed the densest and finest surface structure. The TiN contents in obtained Ni/W–TiN composites at 8 and 16 g/L were estimated to 8.1 and 5.4 wt%, respectively. The average Ni/W grain diameter in Ni/W–TiN composite obtained at 8 g/L TiN was recorded as 84.7 nm. The protrusion and depression heights of the composite deposited at 8 g/L were 81.8 and 45.4 nm, respectively. This composite also processed an average microhardness of 897.6 HV, with only a few shallow and narrow scratches on its worn surface, demonstrating its prominent wear resistance when compared to the other three composites.  相似文献   

11.
A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial discharge capacitance after 7,000 cycles. The fabricated binder-free hierarchical composite electrode with superior electrochemical performance is a promising candidate for high-performance supercapacitors.  相似文献   

12.
Nickel/carbon composite (Ni/C) thin films were used as catalyst supports for the growth of vertically aligned multiwalled carbon nanotubes (MWCNTs) at temperature as low as 420 °C. Nickel nanoparticles embedded within the carbon matrix of Ni/C films have served as catalysts for the synthesis of nanotubes by PECVD using acetylene/ammonia plasma. Two different nickel contents (40 at.% and 60 at.%) in the films were used. Analysis indicated a diffusion of nickel atoms in the form of nanoparticles to the film surface upon annealing. This diffusion depends on both annealing temperature and nickel concentration in the films and affects the MWCNT growth at low temperature. The MWCNT synthesis was tested at growth temperature ranging between 335 and 520 °C. The growth of MWCNTs at 420 °C was only achieved by using Ni/C films with a high nickel content (60 at.%). These MWCNTs did not present considerable loss in their growth rate and structural quality compared to MWCNTs grown on classical substrates (Ni catalysts deposited on TiN), at higher temperature (520–600 °C). The results suggest that carbon saturation at the surface and subsurface of nickel catalysts of the Ni/C films is responsible for the improvement of MWCNT growth at low temperature.  相似文献   

13.
The Ba(Ti,Zr)O3-based multilayer ceramic capacitors (MLCCs) with Ni electrodes, which meet the Electronic Industry Association Y5V standard (from −30° to 85°C, at a temperature capacitance coefficient between −82% and 22%), have been studied in view of the electrode-ceramic inter-diffusion by several microstructual techniques (scanning electron microscopy/transmission electron microscopy/high-resolution transmission electron microscopy (HRTEM)) with an energy-dispersive X-ray spectrometer (EDS). The EDS analysis shows that the elements' inter-diffusion took place along the metal–dielectric interface and the migration of Ni toward the dielectric layers dominated this process. The incorporation of Ni did not transform the crystal structure but introduced lattice distortions, which were characterized by HRTEM, X-ray diffraction, and EDS. The degree of Ni diffusion in the sample with the thinner dielectric layer was more severe. It was concluded from the results that the Ni diffusion is related to the formation of oxygen vacancies after the annealing process, which should be a noticeable factor in the degradation behavior and reliability of base metal electrode MLCCs. The factors influencing the inter-diffusion are also discussed.  相似文献   

14.
The combination of W and SiC has many applications such as a hot cell of a thermionic energy converter, nuclear material, and high temperature microelectronics. In this study, a 2 µm thick TiN film is introduced as a diffusion barrier between SiC and W to avoid the inter-diffusion reaction at high temperature. The effect of annealing temperature on the surface morphology and microstructure of the TiN film is studied to explore its high temperature stability. Then 500 nm W film is sputtered on the TiN film to characterize the inter-diffusion and stability of the W/TiN/SiC multilayer at 1100°C by XRD, Raman spectroscopy and cross-sectional EDS mapping techniques. The results indicate that the W/TiN/SiC multilayer is very stable even when heated at 1100°C for 25 hours.  相似文献   

15.
Wei-Chang Yang 《Carbon》2007,45(8):1679-1685
The growth of carbon nanotube (CNT) using cobalt silicide as a catalyst and source/drain electrode is proposed to explore its feasibility for fabricating integrated-circuit process compatible, self-aligned CNT field-effect transistors (CNTFET). The silicide nanoparticles formed in the Ti/Co/poly-Si source/drain stack were used as a catalyst for CNT growth. Results show that single-walled CNTs have been synthesized between pre-defined catalytic cobalt silicide source/drain pairs by chemical vapor deposition at 800-900 °C. Preliminary transistor characteristics of the CNTFETs have also been achieved.  相似文献   

16.
Copper has been intensively investigated as an electrocatalyst for electrochemical reduction of aqueous nitrate. Here we report preparation of Cu electrocatalyst by electrochemical deposition of Cu on Ni foils, annealing treatment to produce nanograins of Cu oxides and electroreduction to form metallic Cu nanograins to enhance the catalytic activities of nitrate reduction. The prepared Cu electrocatalysts were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The electrochemical deposition of Cu on Ni substrates produced different sizes and sharp-edged microcrystal of Cu, and the annealing treatment at 300°C transformed these microcrystals into uniform spheroids of Cu oxides in sizes of 150–350?nm. The potentiostatic electrolysis of aqueous nitrate showed that the annealing treatment improved nitrate reduction efficiency by 4.5 times and 20% at ?0.8 and ?1.4?V versus the saturated calomel electrode, respectively. The rate and Faradaic efficiency for nitrate reduction by modified Cu electrode remained constant within a testing time of 48?h. The results demonstrate that electrochemical deposition on Ni foils and subsequent annealing treatment provide a simple and cost-effective approach to enhance the catalytic activity and stability of a transition metal catalyst.  相似文献   

17.
The Si3N4 ceramic was joined to nickel-based superalloy via partial transient liquid phase bonding with Ti/Au/Ni interlayers. The interfacial microstructure and strength of joints were examined by methods of scanning electron microscopy, transmission electron microscopy, X-ray diffraction and a three-point flexural test. The results revealed the joint between Si3N4 and Ni interlayer consisted of TiN layer, Au-rich phase, Ni-rich phase and tiny TiO phase. The highest flexural strength of 211?MPa was achieved at room temperature, and the high-temperature strength of joints reached up to 117?MPa when testing at 1073?K. Post-bonding treatment indicated the joint strength of 120?MPa was obtained after annealing in air at 1073?K for 100?h, which exhibited superior oxidation resistant.  相似文献   

18.
In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support.  相似文献   

19.
《Ceramics International》2022,48(9):12635-12640
Herein, dispersed Ni species over the surface of plasmonic TiN nanocrystals (TiN@Ni) are manufactured by using wetness impregnation method. This developmental material holds abundant surface sites and local surface plasmon resonance property. To further satisfy the requirement as the electrocatalyst for dye-sensitized solar cell (DSSC), bifunctional TiN@Ni nanocrystals are incorporated with monolayer MXene to construct the continuous conductive matrix. The yielded TiN@Ni-MXene film serves as counter electrode, power conversion efficiency(PCE) of corresponding DSSC under conventional irradiation condition is 8.08%, which surpasses as-reference Pt-based DSSC(7.59%). When further adding the NIR irradiation from counter electrode side of device, DSSC achieves an impressive PCE of 8.45%. The superior performance of TiN@Ni-MXene electrode should be attributed to the created active sites on the surface of TiN support, and the plasmonic effect from TiN@Ni nanoparticles via utilizing NIR light. Ni species provide more adsorption sites for triiodide ions, meanwhile the elevated temperature from plasmon-induced photothermal effect can effectively boost the triiodide reducing reaction rates at the interface of electrode and electrolyte. Thus electrocatalytic performance of TiN@Ni-MXene counter electrode is remarkablely enhanced. The strategy here will be beneficial for the design of highly active and stable electrocatalyst for DSSC, as well as realizing the efficient utilization for wide-spectrum solar energy.  相似文献   

20.
A Mo/TiN composite powder has been synthesized by a sol–gel method to improve the electrical performance and microstructural stability of the alkali metal thermal to electric converter electrode. The core (TiN)–shell (Mo) structure of the composite powder is confirmed by energy-dispersive X-ray spectroscopy and scanning electron microscopy. The composite powder is primarily composed of submicron (400–800 nm) particles that are coated on a core (>3–5 μm) particle. The Mo/TiN composite electrode exhibits high electrical conductivities of 1000 Scm−1 at 300 °C and 260 Scm−1 at 700  °C in an Ar atmosphere. The electrode exhibits excellent tolerance against grain growth during thermal cycling tests (R.T.↔800 °C), where the average growth rate of Mo grains in the Mo/TiN composite electrodes is controlled less than 0.5%/time (0.62→0.65 μm), while the growth rate in Mo electrodes is 306.7%/time (0.24→3.92 μm). It can be concluded that the Mo/TiN composite powder will suppress the degradation of the electrode and enhance the performance and durability of the unit cell at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号