首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究Zn添加对Mg-10Gd-3Y-0.6Zr(wt.%)合金在铸态、固溶态和峰时效态下显微组织和力学性能的影响。实验结果表明,不含Zn的铸态合金由α-Mg和Mg_(24)(Gd,Y)_5相组成,而含0.5wt.%Zn的铸态合金由α-Mg、(Mg,Zn)_3(Gd,Y)和Mg_(24)(Gd,Y,Zn)_5相组成。随着Zn含量增加到1 wt.%,Mg_(24)(Gd,Y,Zn)_5相消失,一些针状堆垛层错沿晶界分布。此外,在含2wt.%Zn的铸态合金中观察到18R型长周期结构相。固溶处理后,Mg_(24)(Gd,Y)_5和Mg_(24)(Gd,Y,Zn)_5共晶相完全溶解,(Mg,Zn)_3(Gd,Y)相、针状堆垛层错和18R型长周期结构相均转化为14H型长周期结构相。适当体积分数的14H型长周期结构相和细小的椭球状β′相共同赋予峰时效态下含0.5 wt.%Zn合金优良的综合力学性能,该合金的抗拉强度、屈服强度和伸长率分别为338 MPa、201 MPa和6.8%。  相似文献   

2.
利用传统的熔铸法制备Mg-14.28Gd-2.44Zn-0.54Zr合金,研究铸态和固溶态合金的微结构。利用销-盘装置研究铸态和固溶态合金的室温润滑滑动摩擦磨损行为研究。在外载荷为40 N,滑动速度为30-300 mm/s以及滑行路程为5000 m情况下,测量磨损率和摩擦因数。研究结果表明:铸态合金主要由α-Mg固溶体、分布在基体内的层片状的14H型长周期结构(LPSO)和β-[(Mg,Zn)3Gd]相组成。经过温度为773 K固溶处理35 h后,大量的β相转变成具有14H型X相LPSO结构。由于固溶处理后大量β相转变为热稳定的韧性X-Mg12Gd Zn长周期结构相,固溶合金呈现较低的抗磨损能力。  相似文献   

3.
采用普通凝固技术制备了含有长周期堆垛有序(long period stacking ordered,LPSO)结构相的Mg92Zn4Y4和Mg92Zn4Y3Gd1合金。通过OM、SEM、EDS、XRD和TEM分析了合金中各相形貌、微区成分及结构。结果表明:Zn/RE原子比为1的2种铸态镁合金中均存在14H-LPSO结构相;在Mg-Zn-Y合金中添加稀土元素Gd增加了合金的形核质点并促进了长周期堆垛有序结构相的形成,14H-LPSO相体积分数由12.1%增至30.4%;LPSO结构相在高温形成时分割了αMg树枝晶,基体平均晶粒尺寸由50μm降至10μm以下;铸态Mg92Zn4Y4合金的凝固组织为α-Mg固溶体+Mg12Zn Y+Mg3Zn3Y2+Mg-Y;铸态Mg92Zn4Y3Gd1合金的凝固组织主要为α-Mg固溶体+Mg12Zn(Y,Gd)+Mg3Zn3(Y,Gd)2;室温条件下,Mg92Zn4Y4和Mg92Zn4Y3Gd1合金的压缩率达到12.4%和15.5%,热导率分别为99.233和88.639W·(m·K)-1。  相似文献   

4.
采用普通凝固技术制备了含有长周期堆垛有序 (long period stacking ordered, LPSO) 结构相的Mg92Zn4Y4和Mg92Zn4Y3Gd1合金。通过OM、SEM、EDS、XRD和TEM分析了合金中各相形貌、微区成分及结构。结果表明:Zn/RE原子比为1的2种铸态镁合金中均存在14H-LPSO结构相;在Mg-Zn-Y合金中添加稀土元素Gd增加了合金的形核质点并促进了长周期堆垛有序结构相的形成,14H-LPSO相体积分数由12.1%增至30.4%;LPSO结构相在高温形成时分割了a-Mg树枝晶,基体平均晶粒尺寸由50 μm降至10 μm以下;铸态Mg92Zn4Y4合金的凝固组织为a-Mg固溶体+Mg12ZnY+Mg3Zn3Y2+Mg-Y;铸态Mg92Zn4Y3Gd1合金的凝固组织主要为a-Mg固溶体+Mg12Zn(Y,Gd)+Mg3Zn3(Y,Gd)2;室温条件下,Mg92Zn4Y4和Mg92Zn4Y3Gd1合金的压缩率达到12.4%和15.5%,热导率分别为99.233和88.639 W·(m·K)-1。  相似文献   

5.
本文考察了快速凝固条件下不同含量Li元素添加对长周期有序结构相增强Mg-Gd-Zn合金微观组织和力学性能的影响。结果表明,随着Li元素的添加,铸态合金中Gd、Zn溶质原子在镁基体晶粒中的过饱和度降低、(Mg,Zn)3Gd晶界析出相增加、镁基体晶粒尺寸减小。而固溶处理后,随着Li含量的增加,合金中14H型长周期堆垛有序结构相(LPSO)的形成受到抑制,同时纳米/亚微米(Mg,Zn)3Gd颗粒相大量析出,当Li为7.6at. %时合金中无LPSO形成。经热挤压变形后,合金中块状14H相发生扭着分层开裂、层片状14H相发生不同程度溶解、(Mg,Zn)3Gd相破碎细化、基体发生不同程度再结晶;不加Li的Mg96.5Gd2.5Zn1表现出最佳的力学性能(UTS=325,δ=9.5%),而含Li合金则随Li含量的增加,力学性能逐步下降。合金在不同条件下的组织转变机理及力学行为变化被进行了分析。  相似文献   

6.
探讨了在Mg-Y-Zn合金中添加Li元素时,Li对合金的微观组织和力学性能的影响。研究发现,Li元素的添加,能够促进铸态合金18R型长周期相的形成,同时细化枝晶,而固溶处理后会改变14H型长周期相的形成方式。力学性能测试结果表明,这种14H型长周期相会提高基体的显微硬度。  相似文献   

7.
通过OM,SEM,TEM,XRD和力学拉伸实验,研究了固溶和时效热处理对Mg-12Gd-3Y-Sm-0.5Zr(质量分数,%)合金组织和力学性能的影响。结果表明,Mg-12Gd-3Y-Sm-0.5Zr合金铸态组织由α-Mg基体和含Mg5Gd相和Mg41Sm5相的粗大枝晶组成,经过固溶和时效处理后,时效析出了Mg24Y5相,Mg5Gd相演变为Mg3Gd相,固溶时效态合金纳米尺寸的长条状相的脱溶析出可有效强化合金。合金在不同状态下的室温抗拉强度为:铸态219.4 MPa、固溶态224.0 MPa和时效态299.8 MPa。  相似文献   

8.
Mg—Gd—Ag—Zr合金的组织与力学性能   总被引:1,自引:1,他引:0  
对Mg-18.6Gd-1.9Ag-0.24Zr合金铸态、T4态和T6态的显微组织和力学性能进行了研究.结果表明,该合金铸态时由α-Mg与分布在晶界的Mg5Gd相组成;T4态时由过饱和α-Mg固溶体和H2Gd相组成;峰值时效态的析出相为β相.该合金具有明显的时效强化效果,在200、225、250℃温度下的时效处理结果发现,随着时效温度的升高,合金的峰值时效硬度下降,到达峰值硬度的时间大为缩短.其中200℃下的峰值时效硬度(HV)最高,达到了134.合金经过200℃的峰值时效处理后具有最高的室温力学性能,屈服强度、抗拉强度和伸长率分别为291.0 MPa、383.5 MPa和1.17%.  相似文献   

9.
分析了Mg-10Gd-3Y-0.6Zr-1Ag合金的显微组织、时效特性及力学性能。结果表明,合金的铸态组织主要由α-Mg基体及Mg24(GdY)5、Mg3Gd、Mg2Gd和Mg5Gd相组成,Ag元素固溶于基体中,没有形成含Ag化合物。时效硬化特性曲线表明,Mg-Gd-Y-Zr-Ag合金具有明显的时效硬化特征。添加1%的Ag元素使合金的峰时效时间提前,但对硬度无明显影响。根据特性曲线确定了固溶合金的最佳时效工艺参数;合金经T6态热处理后强度有明显提高,而Ag元素的添加对合金的铸态及热处理态的室温力学性能均无明显影响。  相似文献   

10.
研究添加不同含量Zn对铸态Mg-2Dy(摩尔分数,%)合金显微组织、时效行为和力学性能的影响。结果表明:Zn含量为0.5%和1%(摩尔分数)时,铸态合金中分别析出片层状具有18R类型长周期有序(LPSO)结构的Mg12Zn Dy相和粗大的Mg3Zn3Dy2相;同时,Zn的添加细化了合金的晶粒;固溶处理后,LPSO相由18R类型转变成沿晶内分布的细条状的14H类型,新的(Mg,Zn)x Dy相形成,且Mg3Zn3Dy2相的体积分数减小;添加0.5%Zn有效地增强了合金的时效硬化行为,提高了合金的室温和200℃的拉伸强度。  相似文献   

11.
Mg-(11-13)Gd-1Zn变形镁合金的组织和力学性能   总被引:1,自引:0,他引:1  
制备了3种成分的Mg-Gd-Zn三元合金,并对其显微组织和力学性能进行了较系统的研究.结果表明,Mg-(11-13)Gd-1Zn(质量分数,%)三元合金的铸态组织由α-Mg,(Mg,Zn)3Gd和具有14H结构的长周期堆垛有序相(14H-LPSO)组成;(Mg,Zn)3Gd呈现典型的网状共晶形貌,其体积分数随Gd含量的增加而增大.热挤压过程中(Mg,Zn)3Gd相破碎,其颗粒沿挤压方向排列,而14H-LPSO相则分布于条状分布的(Mg,Zn)3Gd颗粒之间.铸态和挤压态合金在高温固溶处理后,14H-LPSO相的体积分数增加,大部分(Mg,Zn)3Gd相溶入基体.挤压态合金经固溶和时效(T6)处理后,显微组织中14H-LPSO相的体积分数大幅度增加,而且出现了β′和β1沉淀颗粒.对挤压后的合金直接进行时效处理(T5)过程中也形成了β′和β1沉淀,但14H-LPSO相没有显著增加.3种合金中Mg-11Gd-1Zn合金在T6态的性能最好,抗拉强度高达416 MPa.  相似文献   

12.
采用OM、SEM、EDS、TEM和SAED等技术研究了Mg-12Gd-2Y-0.5Sm-0.5Sb-0.5Zr合金在铸态、时效态及固溶态的显微组织变化。结果表明,与铸态合金显微组织相比,时效态合金析出相更加细小弥散;铸态合金析出相有α-Mg、Mg5Gd相和Mg24Y5相,固溶态有α-Mg、Mg3Gd相和Mg24Y5相,时效态有α-Mg,Mg41Sm5,β'相。β'相形态为多个纺锤形相联结而成,相互夹角呈120°,具有周期结构。  相似文献   

13.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了不同热处理对Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能的影响。结果表明:不论是铸态、固溶态,还是时效态,合金组织都主要由α-Mg基体以及稀土化合物Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12Zn(Gd,Y)组成;但铸态下合金中第二相主要为Mg5(Gd,Y,Zn),在晶内呈平行的流线状排列,晶粒粗大。通过固溶时效处理,Mg12Zn(Gd,Y)相在晶界处析出并向晶内生长,成为合金的主要强化相,其强化方式主要为固溶强化和时效强化。室温下,铸态合金抗拉强度为138 MPa,伸长率为2.16%,时效态合金抗拉强度为223 MPa,伸长率为3.94%,合金力学性能得到明显提升。  相似文献   

14.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了不同热处理对Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能的影响。结果表明:不论是铸态、固溶态,还是时效态,合金组织都主要由α-Mg基体以及稀土化合物Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12Zn(Gd,Y)组成;但铸态下合金中第二相主要为Mg5(Gd,Y,Zn),在晶内呈平行的流线状排列,晶粒粗大。通过固溶时效处理,Mg12Zn(Gd,Y)相在晶界处析出并向晶内生长,成为合金的主要强化相,其强化方式主要为固溶强化和时效强化。室温下,铸态合金抗拉强度为138 MPa,伸长率为2.16%,时效态合金抗拉强度为223 MPa,伸长率为3.94%,合金力学性能得到明显提升。  相似文献   

15.
采用差热分析(DSC)、X射线衍射(XRD)、光学金相显微镜(OM)、扫描电子显微镜(SEM)和能谱分析(EDS)研究了均匀化温度与时间对GW92铸态合金显微组织和力学性能的影响,确定了该合金最佳的均匀化工艺。结果表明:GW92铸态合金的显微组织由α-Mg基体、Mg5(Gd,Y)相、Mg5(Gd,Y,Zn)相、Mg12Zn(Gd,Y)相和富稀土相组成;均匀化后,GW92镁合金主要由α-Mg基体、Mg12Zn(Gd,Y)相共存。该合金最佳的均匀化工艺为510℃×18 h,合金抗拉强度为247.2 MPa,伸长率为6.1%。  相似文献   

16.
借助OM、XRD、SEM和电子拉力试验机,对时效态Mg-(5%~15%)Gd合金的显微组织及力学性能进行了研究。结果表明:随着稀土元素Gd含量的增加,Gd对Mg-Gd合金铸态组织的细化作用增强,并生成高熔点的Mg5Gd相。经过固溶时效处理后,合金有新相Mg3Gd生成。合金的屈服强度及高温抗拉强度显著提高,伸长率下降。断口具有大量的解理台阶及撕裂棱,表现为层片状。随着Gd含量的增加,脆性相提高合金的强度,降低合金的塑性。  相似文献   

17.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了Zn对铸态Mg-9Gd-4Y-x Zn-0.5Zr(x=0,0.5 1.0,1.5,2.0)合金组织和力学性能的影响。结果表明:铸态Mg-9Gd-4Y-0.5Zr合金显微组织由基体α-Mg和共晶相Mg5(Gd,Y)组成。加入Zn元素后,合金组织中出现Mg5(Gd,Y,Zn)相和Mg12Zn(Gd,Y)相,分布于晶界或晶内。当Zn含量为1%时,合金组织得到明显细化,第二相分布均匀,力学性能显著提升。此时,合金抗拉强度和屈服强度到达最大值,分别为209.72 MPa和172.69 MPa。随着Zn含量进一步增加,合金组织粗化,第二相含量迅速增加且沿晶界逐渐呈网状分布并逐渐向晶内深入,合金强度也明显降低。  相似文献   

18.
分析了铸态和挤压态ZK60?xGd(x=0~4)合金的组织和相组成,测试了其拉伸力学性能。结果表明,随着Gd含量的增加,铸态组织逐渐细化,Mg?Zn?Gd新相逐渐增多,而MgZn2相逐渐减少直至消失,第二相趋于连续网状分布于晶界处;当 Gd 含量不超过2.98%时,铸态室温拉伸力学性能稍降低。经挤压比λ=40和挤压温度T=593 K的挤压后,组织显著细化,平均晶粒尺寸逐渐减至ZK60?2.98Gd合金的2μm,破碎的第二相沿着挤压方向呈带状分布;挤压态的拉伸力学性能均显著提高:298和473 K时的抗拉强度分别从ZK60合金的355和120 MPa逐渐提高至ZK60?2.98Gd合金的380和164 MPa。挤压态拉伸断口呈现典型的韧性断裂特征。  相似文献   

19.
研究了3种成分的Mg-11Gd-(1,1.5,2)Zn合金的显微组织和力学性能。结果表明,合金的铸态显微组织均由α-Mg基体、(Mg,Zn)3Gd共晶相和14H型LPSO相组成。铸态组织中(Mg,Zn)3Gd相的体积分数随Zn含量的增加而增大,且其热稳定性不断提高。同时,合金中LPSO相的体积分数也随Zn含量的增加而逐渐增大。合金在常温时的抗拉强度随着Zn含量的增加而降低,其中Zn含量较少的Mg-11Gd-1Zn合金在T6处理后呈现最高的强度和良好的塑性。当Zn含量较多时,合金T6处理的效果却远低于T5处理。随Zn含量的增加,合金在200℃高温下的抗蠕变性能也略有下降,但3种合金的抗蠕变性能都优于WE54合金。  相似文献   

20.
对汽车发动机用Mg-7Gd-5Y合金进行了固溶和时效处理,研究了固溶温度和时效时间对合金微观组织与力学性能的影响,并分析了其作用机理。结果表明:铸态合金中主要由α-Mg固溶体、Mg3(Gd,Y)相、14H长周期相和立方状富稀土相组成;在固溶温度为500℃时,合金的抗拉强度相对原始态提高了11%、断后伸长率提高了2.4%,具有较好的强度和塑性结合;随着固溶温度的升高,晶界处共晶相含量逐渐减小;500℃固溶10 h后晶界向晶内生长的长周期相片层变薄,并形成了较多的堆垛层错;随着时效时间的延长,合金的屈服强度和抗拉强度都表现为先升高而后降低的趋势,在时效时间为120 h时达到最大值,而断后伸长率随着时效时间的延长而整体保持逐渐降低的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号