首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用固相反应法制备Mn掺杂Ca_(0.6)La_(0.8/3)(Ti_(1-x)Mn_x)O3陶瓷,研究了掺杂离子对其相结构和微波介电性能的影响。结果表明:Mn掺杂样品为单一的正交晶系钙钛矿结构;样品体积密度以及Q×f_0值随着MnO_2含量的增加呈现出先增大后减小趋势;而介电常数εr随着MnO_2含量的增加仅有小幅度降低;MnO_2的加入有助于谐振频率温度系数tf的降低。当Mn掺杂量为0.015时,样品具有较佳的微波性能:εr=113、Q×f_0=9 877 GHz和tf=186×10~(-6)/℃。  相似文献   

2.
主要研究了不同Sm掺杂浓度对Ba4La19.33Ti18O54陶瓷的微波介电性能和微观结构的影响。首先利用常规固相反应技术制备了Sm含量y分别为0.0,0.1,0.3,0.5和0.7的五种Ba4(La1-ySmy)9.33Ti18O54陶瓷样品;室温下在0.3~3.0GHz频率范围内,利用网格分析仪测量了这些样品的介电常数和介电损耗因子;结果表明随着Sm掺杂含量的增大,样品介电损耗明显减小,而介电常数只有微小减少。当Sm掺杂含量y=0.5时,样品的介电性能最好。此外,还利用X射线衍射仪和扫描电子显微镜研究了样品的微观结构及随微波介电性能的变化。  相似文献   

3.
用流延成型法制备Mn掺杂钛酸锶钡(BaxSr1-xTiO3,BST)/MgO复相陶瓷厚膜,介绍从制粉、流延浆料制备到厚膜的脱脂及烧结的整个工艺流程。通过差热-热重测试曲线分析Mn掺杂BST/MgO流延膜的脱脂特性,制定膜片的脱脂工艺。用扫描电镜观察不同温度烧结样品的微观结构,确定最佳厚膜烧结工艺,在1320℃和1350℃烧结的陶瓷厚膜样品的相对密度达到96.1%。分析研究不同温度烧结陶瓷厚膜的介电性能的结果表明:1350℃烧结样品的室温相对介电常数为108,介电损耗低于0.002,Curie温度在-70℃左右,介电常数可调率为25.15%。  相似文献   

4.
笔者采用溶胶-凝胶法分别于1 300℃、1 350℃、1 400℃、1 450℃下制备了Zr_(0.1)Ti_(0.9)Ba_(0.85)Ca_(0.15)O_3+xmol%La_2O_3,其中x=0,0.2,0.6,0.8,1.0。XRD结果表明:试样呈现单一的钙钛矿结构,没有杂质相的出现La~(3+)与BCZT陶瓷形成了固溶体。SEM显示,试样的晶粒尺寸随着La~(3+)含量的增加而逐渐减小;介电常数测试温度的升高呈现先增大随后减小的趋势,而介电损耗则先减小后增大。试样的介电性能在烧结温度为1 400℃,La~(3+)掺量为0.8 mol%时有最大值。此时的最大介电常数为5 790.15,最小的介电损耗值为0.004。  相似文献   

5.
采用传统固相合成法制备了xCa0.6La0.8/3TiO3-(1-x)(Li0.5Sm0.5)TiO3(CLT-LST)系列微波介质陶瓷材料,研究了该系列微波介质陶瓷的物相结构、表面形貌、介电性能。实验发现:随着Ca0.6La0.8/3TiO3含量的增多,CLT-LST样品XRD峰轻微左移。陶瓷组成对微波介电性能影响显著,复合体系CLT-LST的微波介电性能随着x值不同而连续变化:当x从0.2上升到0.6时,介电常数(εr)逐步增大,在x=(0.4~0.6),εr变化趋于稳定,达到较佳值;品质因数(Q·f)则先减小后增大再迅速减小;谐振频率温度系数(τf)逐渐从负值向正值方向移动。当复合体系组成为0.4Ca0.6La0.8/3TiO3-0.6(Li0.5Sm0.5)TiO3时,在1 250℃烧结4h所得到的微波介电性能较佳,εr=125;Q·f=2 680GHz;τf=7.0×106/℃。  相似文献   

6.
采用固相反应法制备Mn掺杂Ca_(0.6)La_(0.8/3)(Ti_(1-x)Mn_x)O3陶瓷,研究了掺杂离子对其相结构和微波介电性能的影响。结果表明:Mn掺杂样品为单一的正交晶系钙钛矿结构;样品体积密度以及Q×f_0值随着MnO_2含量的增加呈现出先增大后减小趋势;而介电常数εr随着MnO_2含量的增加仅有小幅度降低;MnO_2的加入有助于谐振频率温度系数tf的降低。当Mn掺杂量为0.015时,样品具有较佳的微波性能:εr=113、Q×f_0=9 877 GHz和tf=186×10^(-6)/℃。  相似文献   

7.
以EDTA为络合剂,采用聚合物前驱体法合成了0.65CaTiO_3–0.35(La_(1–x)Ce_x)AlO_3(CTLCA–x)微波介质陶瓷。研究了Ce~(3+)取代La~(3+)对陶瓷微波介电性能、显微结构以及晶体结构的影响。结果表明:采用聚合物前驱体法合成的CTLCA–x陶瓷,相比于传统固相法,烧结温度降低了125℃左右,在所研究的组成范围内均能形成正交相固溶体,随着Ce~(3+)掺杂量x的逐渐增加,单位晶胞体积减小,陶瓷的品质因数Q×f和介电常数ε_r均增加,但频率温度系数τ_f下降。当x=0.2时,CTLCA~–0.2陶瓷在1 325℃保温3 h烧结后具有最佳的微波介电性能:ε_r=42.7,Q×f=39 159 GHz,τ_f=–7×10~(–6)/℃。  相似文献   

8.
实验以分析纯的乙酸钡、硝酸氧锆、钛酸丁酯、NH_3·H_2O(氨水)、Gd_2O_3、Nb_2O_5、Mn(CH_3COO)_2·4H_2O、C_4H_6MgO_4·H_2O为原料,采用溶胶-凝胶法制备Gd~(3+)掺杂Ba(Zr_(0.1)Ti_(0.9))O_3基陶瓷。通过XRD结构测试、SEM形貌测试和介电性能测试。结果表明Gd~(3+)掺杂Ba(Zr_(0.1)Ti_(0.9))O_3陶瓷在常温下仍为钙钛矿型结构,Gd~(3+)掺杂量为0.5 mol%时,常温介电常数最大,介电损耗最小。再以Ba(Zr_(0.1)Ti_(0.9))O_3+0.5 mol%Gd~(3+)陶瓷为基体,掺杂不同比例的Nb~(5+),制备Gd_2O_3、Nb_2O_5复合掺杂Ba(Zr_(0.1)Ti_(0.9))O_3陶瓷。通过XRD晶体结构测试、SEM形貌测试和介电性能测试实验,得出Gd~(3+)掺杂量为0.5 mol%、Nb~(5+)掺杂量为0.75 mol%时,复合掺杂BZT陶瓷的介电性能为最优。  相似文献   

9.
用固相反应法制备La2O3掺杂的铁电陶瓷(Bi0.5Na0.5)0.94Ba0.06TiO3(BNBT6)。X射线衍射曲线表明掺杂0-0.6wt%La2O3的BNBT6为钙钛结构。研究了La2O3掺杂对BNBT6陶瓷介电性能和压电性能的影响。结果表明La2O3掺杂量为0.3wt%的BNBT6陶瓷综合性能最佳,其中介电常数为1981.4,介电损耗为0.0625和压电常数为145pc/N。SEM图象表明La2O3掺杂提高了陶瓷的致密度。  相似文献   

10.
赵莹  赵科良  鹿宁  李勇 《陶瓷》2010,(7):14-16,20
系统地研究了Mg2+掺杂对PZT材料相结构及介电性能的影响,结果表明:Mg2+的添加阻止了陶瓷晶粒的过分长大,起到了细化晶粒的作用,改善其烧结性能,降低了烧结温度;由于晶格发生畸变,体系的相结构由三方相向四方相过渡;Mg2+的引入使PZT陶瓷材料的红外光谱图明显向高波数的方向移动,并且显著提高了材料的介电常数,有效降低了其介电损耗,使材料的介电性能得到了明显优化。  相似文献   

11.
采用固相反应法制备(Bi1.5–x Erx Zn0.5)(Zn0.5Nb1.5)O7(BEZN,x=0、0.05、0.10、0.15、0.20、0.25、0.30)陶瓷,研究了Er3+替代Bi3+对(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7(BZN)陶瓷结构与介电性能的影响。结果表明:当Er3+掺杂量x<0.15 mol时,样品为单一α-BZN相;当x≥0.15 mol时,出现第二相。用分子动力学计算Er3+分别进入A、B位的溶解能结果可知,此时Er3+可能已进入B位。随Er3+掺杂量增加,Er3+进入晶格,BEZN陶瓷密度从6.999 g/cm3减小到6.680 g/cm3,有明显细化晶粒作用。一定频率(1 MHz)条件下,峰值介电常数随Er3+掺杂量增加而减小,弛豫峰温度范围介电常数变化量Δε逐渐减小,即弛豫峰逐渐宽化和平坦。  相似文献   

12.
锰掺杂对压电陶瓷介电性能的影响   总被引:3,自引:0,他引:3  
采用传统的电子陶瓷工艺制备了高性能四元系压电陶瓷(PZN-PMS-PZT)。考察了不同剂量锰掺杂对压电陶瓷的室温介电常数(εTr),介电常数温度谱以及居里温度(Tc)的影响。实验结果表明:随着Mn含量的增加,压电陶瓷的室温介电常数εTr减小;由于内偏置场的影响,居里温度Tc随锰含量的增加而增加。  相似文献   

13.
采用新型溶胶-凝胶制粉技术和传统陶瓷工艺相结合的方法,制备了(Ba1-xCax)TiO3(x=0~0.16)陶瓷,并对陶瓷晶相特征及其介电、压电性能进行了研究。结果表明,经1250℃烧结的陶瓷由单一晶相组成,晶体具有钙钛矿结构。其介电、压电特征受CaO加入量的影响显著。当x≤0.1时,陶瓷的介电常数随CaO加入量的增加而增大,并表现出弛豫铁电体的特征,其居里点与纯BaTiO3陶瓷相差不大。当x>0.1时,陶瓷的介电常数随CaO的增加而减小,其铁电性能弱化,但介电损耗较小,介电温度稳定性较好。  相似文献   

14.
采用固相烧结法,探讨了MnCO_3掺杂降低Ba(Mg_(1/3)Nb_(2/3))O_3(BMN)烧结温度的机理,研究了MnCO_3掺杂量对BMN陶瓷微波介电性能的影响。结果表明,适量的MnCO_3掺杂可以促进烧结,有效降低BMN陶瓷的烧结温度,改善陶瓷的微波介电性能。当MnCO_3掺杂量为4%(质量分数)时,BMN陶瓷的烧结温度从纯相烧结时的1 550℃降低到1 250℃,表观密度ρ=6.36 g/cm~3,相对理论密度达到98.6%,并具有良好的微波介电特性:高相对介电常数ε_r=31.4,高品质因数与谐振频率的乘积Q·f=99 200 GHz(8 GHz),接近于零的谐振频率温度系数τ_f=3×10~(–7)/℃。  相似文献   

15.
彭森  吴孟强  肖勇  许建明  刘轶  陈黎  张树人 《硅酸盐学报》2011,39(12):1947-1952
采用固相烧结法制备SrCO3掺杂Ba(Mg1/3Ta2/3)O3(BMT)微波介质陶瓷,研究SrCO3质量(下同)掺量w(SrCO3)=2%~8%对BMT微波介质陶瓷结构和介电性能的影响。结果表明:添加适量SrCO3可以促进烧结并在一定程度上提高BMT陶瓷体系的B位离子1:2有序度;当w(SrCO3)=6%时,陶瓷致密...  相似文献   

16.
采用柠檬酸盐-自燃烧法制备Na0.5Bi0.5TiO3无铅压电陶瓷,系统地研究了制备工艺条件对陶瓷性能和结构的影响。柠檬酸浓度、溶液pH值、烧结温度制度对陶瓷的压电性能有很大的影响。当柠檬酸浓度C=9%,pH=8.5,烧结温度为1130℃时,陶瓷具备最大的压电常数,d33可达71.2pc/n。1130℃烧结陶瓷的XRD表明,陶瓷已形成单一钙钛矿结构的钛酸铋钠主晶相。  相似文献   

17.
采用传统固相法制备了Bi_4Ti_3O_(12)掺杂(Ba_(0.71),Sr_(0.29))TiO_3(BST)陶瓷。研究了Bi_4Ti_3O_(12)掺杂量对BST电容器陶瓷介电性能、物相组成和微观结构的影响。结果表明:随着Bi_4Ti_3O_(12)掺杂的增加,BST陶瓷的相对介电常数逐渐减小,介电损耗先减小然后增大,Bi_4Ti_3O_(12)掺杂后的BST陶瓷仍为钙钛矿结构。当Bi_4Ti_3O_(12)掺杂量为1.6 wt%时,BST陶瓷的综合介电性能最好,εr为3744,tanδ为0.0068,ΔC/C为+1.70%,-44.61%,容温特性符合Y5V特性。  相似文献   

18.
用快速液相烧结法制备Bi0.95Sm0.05Fe1-xCoxO3(x=0,0.05,0.1)陶瓷样品,用X射线衍射仪分析样品结构,用HP4294A型阻抗分析仪分别测量系列样品的介电特性及相对介电常数(εr)随频率(f)的变化。结果表明:掺杂样品主衍射峰与纯BiFeO3相吻合且具有良好的晶体结构;随着Sm3+、Co3+引入,测量频率在1kHz~1MHz,所有样品的εr和介电损耗(tanδ)随测量f的增加而减少,f=10kHz时,Bi0.95Sm0.05FeO3的εr是BiFeO3的40倍。样品的εr、tanδ随Sm3+和Co3+掺量的变化可以在空间电荷限制电流理论框架下进行解释。样品的磁电耦合效应(Me)随磁场、Co3+掺量的增加而增大,其原因系Sm3+与Fe3+或Co3+通过交换相互作用使铁电极化矢量增大所致,其中Bi0.95Sm0.05Fe0.95Co0.05O3呈现较强的磁电耦合效应,其Me在8kOe(1Oe=79.5A/m)磁场的作用下已达到4.2%。  相似文献   

19.
研究了Sr~(2+)替代Bi~(3+)对Bi_(1.5)ZnNb_(1.5)O_7系介质材料相结构、烧结特性和介电性能的影响。研究结果表明,当Sr替代量x≤0.2时,样品的相结构无其他杂相;在1 MHz下,介电常数随x的增加而逐渐减小,介电损耗随x的增加而逐渐增大;在-195~130℃,在介电常数存在明显的介电弛豫现象,在1 MHz下的峰值温度依次为:-106.4℃、-107.3℃、-108.5℃、-109.7℃。  相似文献   

20.
采用传统固相法制备BaZr_(0.1)Ti_(0.89)Fe_(0.01)O_3–yNb_2O_5(BZTF–y Nb)陶瓷,研究了Nb_2O_5作为改性剂对BZTF陶瓷晶体结构、微观形貌及弥散相变的影响。结果表明:所有试样均形成单一的钙钛矿晶相结构,Nb_2O_5对晶体结构有一定的调整作用。当掺入量为0.75%(摩尔分数)时,试样常温下为四方相结构。当0.00≤y≤0.75%时,试样的介电常数随掺杂量y的增加而逐渐增大,介电损耗则呈现急剧减小趋势。Nb_2O_5可使四方相更加稳定,Curie温度移向高温方向。同时,铁电相向顺电相转变的相变峰变得宽化和弥散,提高试样的介温稳定性。烧结温度为1 300℃、Nb_2O_5含量为0.75%时陶瓷试样有最佳的介电性能:介电常数ε=6 039,介电损耗tanδ=0.007,Curie温度T_C与弥散系数γ分别为16℃和1.98。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号