首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
为了进一步开发魔芋精粉的功能价值,通过利用葡甘聚糖酶,对水解魔芋胶制备葡甘露低聚糖的工艺进行了研究。设计单因素试验,分析了底物浓度、酶添加量、pH值、反应时间和反应温度对酶解工艺的影响,并在此基础上进行了正交试验,确定了制备葡甘露低聚糖的最佳工艺条件为:底物浓度10 g/L,酶添加量80 U/g,反应时间4 h。在最佳工艺条件下,还原糖转化率为93.21%。通过酶解魔芋葡甘聚糖的工艺改良,为其增加了在食品工业中的应用价值。  相似文献   

2.
以β-甘露聚糖酶酶解的魔芋葡甘露低聚糖和未酶解的魔芋胶为主要原料,添加速溶红茶粉,制备红茶风味的魔芋悬浮饮料。在单因素实验的基础上,采用正交实验对魔芋胶酶解工艺条件进行优化。结果表明,酶解葡甘露低聚糖最佳工艺条件为:魔芋胶浓度25%(w/w)、β-甘露聚糖酶酶添加量150U/g、pH5.5、45℃,酶解600s,魔芋胶水解率为50.4%,酶降解的魔芋葡甘露低聚糖粘度为14.3mPa·s。以魔芋胶和魔芋葡甘露低聚糖制备的无糖悬浮饮料优化配方为:木糖醇10%,柠檬酸0.15%,琼脂0.1%,CMC0.1%,酶解物魔芋葡甘露低聚糖0.9%,魔芋胶0.3%,速溶红茶粉0.15%。   相似文献   

3.
β-甘露聚糖酶制备魔芋葡甘露低聚糖的研究   总被引:11,自引:1,他引:11  
利用黑曲霉菌株(Aspergillus niger)LW-1所产酸性β-甘露聚糖酶,对魔芋胶进行水解制备(魔芋)葡甘露低聚糖。酶解的工艺条件为:魔芋胶浓度150g/L,加酶量50IU/g(魔芋胶),酶解温度50℃,酶解时间6h。所获酶解产物经薄板层析和HPLC检测,主要为低聚糖以及少量单糖。再利用酵母发酵法去除其中的可发酵性单糖,最终产物为100%的(魔芋)葡甘露低聚糖。  相似文献   

4.
以魔芋粉为唯一碳源,从种植魔芋土壤中定向筛选一株高产胞外β-甘露聚糖酶的菌株,进行形态观察、生理生化试验和16S rDNA序列分析鉴定,并研究了该β-甘露聚糖酶水解魔芋胶制备魔芋低聚糖的工艺。结果表明,筛选出一株高产胞外β-甘露聚糖酶的菌株,编号为G1,被鉴定为枯草芽孢杆菌(Bacillus subtilis)。确定魔芋低聚糖制备的酶解条件为酶添加量50 U/g魔芋葡甘聚糖(KGM),酶解pH值 6.5,酶解温度55 ℃;当KGM质量浓度为10 g/L,酶解时间2 h时,还原糖转化率为51.6%;当KGM质量浓度为30 g/L,酶解时间4 h时,还原糖转化率仍可达到46.9%,表明该酶具有较高的催化效率。利用薄层层析(TLC)定性分析酶解产物主要为三糖及三糖以上的低聚糖。该研究为实现酶法制备魔芋低聚糖的工业化生产奠定了基础。  相似文献   

5.
《食品工业科技》2008,(09):57-59
研究了β-甘露聚糖酶水解野皂荚多糖胶制备半乳甘露低聚糖的工艺条件以及水解产物中寡糖的组成,结果表明,反应时间和温度对酶解过程影响较大,而pH的影响相对较小。通过正交实验确定了酶法制备半乳甘露低聚糖的最佳工艺:底物浓度4.0%,加酶量700U/g,水解温度65℃,反应体系pH 6.5,水解时间8h。水解液平均聚合度为5.6,经TLC检测,水解产物主要为二糖以上的寡糖,HPLC分析表明,产物中半乳甘露低聚糖纯度达到74%。   相似文献   

6.
野皂荚多糖胶酶法制备半乳甘露低聚糖的研究   总被引:3,自引:0,他引:3  
研究了β-甘露聚糖酶水解野皂荚多糖胶制备半乳甘露低聚糖的工艺条件以及水解产物中寡糖的组成,结果表明,反应时间和温度对酶解过程影响较大,而pH的影响相对较小.通过正交实验确定了酶法制备半乳甘露低聚糖的最佳工艺:底物浓度4.0%,加酶量700U/g,水解温度65℃,反应体系pH 6.5,水解时间8h.水解液平均聚合度为5.6,经TLC检测,水解产物主要为二糖以上的寡糖,HPLC分析表明,产物中半乳甘露低聚糖纯度达到74%.  相似文献   

7.
利用β-甘露聚糖酶水解20%魔芋粗粉制备魔芋甘露寡糖并对其产物进行成分分析.在工艺研究中对反应的pH值、温度、酶添加量、时间等进行单因素试验,确定最佳工艺条件为酶添加量为250IU/g,pH值6.5,45℃条件下,酶解50min,寡糖得率为35%.魔芋甘露寡糖的粗产物经硅胶薄层层析(TLC)分离表明,三糖、四糖含量较大.  相似文献   

8.
魔芋葡甘露聚糖的酶水解工艺条件   总被引:4,自引:1,他引:4       下载免费PDF全文
研究了利用黑曲霉(Aspergillus niger)E-56菌株所产高活力β-甘露聚糖酶水解魔芋葡甘露聚糖的工艺条件.在单因素试验的基础上,进一步通过正交试验确定酶法制备甘露低聚糖的最佳工艺条件为:魔芋胶质量浓度240 g/L(去离子水配制),加酶量为120 U/g,50 ℃酶解8 h.在该工艺条件下,酶解液中葡甘露低聚糖的平均聚合度(DP)在1.8~1.9范围内.  相似文献   

9.
以魔芋精粉为原料,通过研究固定化β-甘露聚糖酶水解魔芋粉制备葡甘露低聚糖工艺条件。结果表明,反应时间、魔芋精粉浓度、反应温度、加酶量及pH等对葡甘露低聚糖的制备都有不同程度的影响,其中魔芋精粉浓度和反应时间影响较大,加酶量和pH影响较小。通过正交实验优化得出的固定化酶水解魔芋精粉制备葡甘露低聚糖的最佳工艺条件为:底物浓度为1.5%、加酶量为80×10~3 U/g、反应时间为6 h、反应温度为75℃,pH值为3.5。葡甘露低聚糖的得率为29.5%。  相似文献   

10.
研究用固定化β-甘露聚糖酶水解魔芋精粉制备甘露低聚糖的工艺.试验结果表明反应时间、魔芋精粉浓度、温度及加酶量对甘露低聚糖的制备有一定影响,其中魔芋精粉浓度和加酶量影响较大,反应温度影响较小.通过正交试验优化出的固定化β-甘露聚糖酶制备甘露低聚糖的最佳工艺条件为:魔芋精粉浓度2%;加酶量为6400U;反应温度70℃;反应时间17 h.在此条件下甘露低聚糖的得率为30.8%.  相似文献   

11.
为获得与油脂感官特征相近的大豆分离蛋白基脂肪替代物,综合运用单因素和Box-Behnken试验设计,以大豆分离蛋白添加量、魔芋胶添加量、加热温度、加热时间、均质时间为考察因子,以复合体系的黏度及乳化稳定性为响应值,确定制备大豆分离蛋白基脂肪替代物的最佳工艺条件。结果表明,最佳工艺条件为大豆分离蛋白质量分数8%、魔芋胶质量分数0.08%、加热温度79.8 ℃、加热时间13 min、均质时间40 s,此条件下复合体系的黏度为45.94 mPa·s,乳化稳定性为74.49 min,与市售植物油相当。  相似文献   

12.
本实验用微波法对野皂荚胶进行阶段性降解。通过微波与强氧化剂、KOH 的耦合以及微波法与酶法的耦合对黏度较高的野皂荚胶进行高浓度降解,经过微波处理用于酶解的浓度已达10%。微波处理后水解24h,半乳甘露低聚糖的纯度提高到73.8%,单糖含量为26.23%。  相似文献   

13.
以植物甾醇酯和葛根素为芯材,阿拉伯胶和β-环状糊精为壁材,采用喷雾干燥法制备植物甾醇酯葛根素复合微胶囊。考察了乳化剂配比、乳化剂用量、固形物含量、芯壁比、壁材比对乳化液稳定性的影响,以及进风温度、出风温度、均质压力对微胶囊化效率的影响,通过单因素试验和正交试验,确定复合微胶囊的最佳工艺参数。结果显示,复合微胶囊的最佳工艺条件为:乳化剂(蔗糖酯-单甘酯)配比6∶4(g/g)、乳化剂用量0.7%(质量分数)、固形物含量20%(质量分数)、芯壁比0.25∶1(g/g)、壁材(阿拉伯胶和β-环状糊精)比5∶5(g/g)、进风温度180 ℃、出风温度75 ℃、均质压力25 MPa。在此工艺条件下复合微胶囊中植物甾醇酯的包埋率为89.04%,葛根素包埋率为80.15%,产品为乳白色、细小均匀的粉末,气味纯正,密度0.568 g/mL,溶解率95.11%,水分含量3.57%,贮藏稳定性提高。  相似文献   

14.
为优化双酶水解技术生产婴幼儿米粉工艺,以α-淀粉酶添加量、β-淀粉酶添加量、调浆水温度为主要影响因素,结合实际生产中的其他水解条件,在单因素试验基础上,运用Box-Behnken试验设计原理,探讨α-淀粉酶添加量、β-淀粉酶添加量、调浆水温度的最佳组合。结果表明:α-淀粉酶添加量0.04‰(相当于0.15 U/g)、β-淀粉酶添加量0.26%(相当于1 820 U/g)、调浆水温度70.2 ℃时生产米粉的淀粉消化指数高达39.26%,与市售品牌米粉相比,淀粉消化指数提高10%以上。  相似文献   

15.
将产黄青霉(Penicillium chrysogenum)来源的β-甘露聚糖酶(PcMan26A)在毕赤酵母中高效表达,经高密度发酵,发酵液酶活力达25200 U/mL.该酶属于GH26家族,与黑曲霉(Aspergillus niger) CBS 513.88来源的β-甘露聚糖酶同源性最高(67.8%),是一个新型β...  相似文献   

16.
利用枯草芽孢杆菌产生的碱性甘露聚糖酶,以魔芋、槐豆胶、瓜尔胶与田菁胶为原料,制备甘露低聚糖。比较了酶对底物水解反应动力学,对低聚糖制备过程中的水解液进行了还原糖测定,并通过质谱对最终酶解液组分进行分析。结果表明:魔芋与槐豆胶为甘露聚糖酶的最适水解底物,水解8h后,还原糖得率稳定,可作为甘露低聚糖生产的指导依据。酶解24h后,魔芋、槐豆胶、瓜尔豆胶及田菁胶的主要产物分别为二糖至九糖、五糖至十糖、二糖至十糖和二糖至十糖。利用酶法生产甘露低聚糖的方法具有水解过程简单、产物聚合度低、纯度高的优点。  相似文献   

17.
利用风味酶、活性炭、β-环状糊精对大米蛋白水解液进行脱苦,采用电子舌技术评价脱苦效果,并用高效液相色谱法评价脱苦前后的水解物对血管紧张素转化酶活性抑制效果变化,探讨大米蛋白水解物的最佳脱苦工艺。结果表明,风味酶法脱苦的最佳处理条件为加酶量2.5%、水解时间20 min、水解pH 5.8;活性炭脱苦的最佳处理条件为活性炭用量2.0%、料液温度60 ℃、处理时间20 min、料液pH 7.0;β-环状糊精脱苦的最佳处理条件为10% β-环状糊精包埋30 min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号