首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper considers a system consisting of two subsystems connected in series with a single repair facility. One sybsystem is K-out-of-N:G system consisting of N identical units, while the other consists of M different units connected in series. The life-times of the active units depend on each other in having simultaneous failure of all the operating units and repair times are distributed quite generally. The system breaks down if more than (N−K+1) units in parallel group are simultaneously in the failed states or if any failure occurs in the series group or if simultaneous failure occurs. The availability and reliability function of the system are obtained simultaneously. Explict expressions for the steady state availability of the system and the mean time to the first system failure are obtained.  相似文献   

2.
This paper develops the model for a system, having two identical units—one operative and the other cold standby. Each unit of the system has three modes—normal, partial failure and total failure. The replacement time of a failed unit by a standby unit is not negligible but is a random variable. System fails when both the units fail totally. Failure time distributions of units are exponential, whereas repair time distributions are arbitrary. Several reliability characteristics of interest to system designers and operations managers have been evaluated using the theory of regeneration point technique.  相似文献   

3.
This paper considers the cost-benefit analysis of a one-server two unit system subject to two different failure modes and slow switch. The failure rates of the units are constant. The repair times and the switchover time are assumed to be arbitrarily distributed. The server repairs the units and puts the standby unit into operation. Detailed analysis of the system is done by using regenerating point technique and results are obtained for mean time to system failure, steady state availability, busy period of a repair man, expected number of visits by the repair man and expected profit earned by the system.  相似文献   

4.
This paper considers a system consisting of two subsystems connected in series with a single repair facility. One subsystem is K-out-of-N:G system consisting of N identical units, while the other consists of M different units connected in series. The life-times of the active units depend on each other in having simultaneous failure of all the operating units and repair times are distributed quite generally. The system breaks down if more than (N?K+1) units in the parallel group are simultaneously in the failed states or if any failure occures in the series group. The availability and reliability function of the system are obtained simultaneously. Explict expressions for the steady state availability of the system and the mean time to the first system failure are obtained.  相似文献   

5.
This paper deals with an investigation of the failure rate time function of the above system. The general equation of the failure rate function is derived by using the Boolean expression of the fault tree diagram for the system. Particular attention is given to the case of three identical units with constant failure rate. This last system is compared with a system which consists of two 100% - units in active parallel.  相似文献   

6.
This paper considers a system consisting of two subsystems connected in series with a single repair facility. One subsystem is K-out-of-N:G system consisting of N identical units, while the other consists of M different units connected in series. The life-times of the active units depend on each other in having simultaneous failure of all the operating units and repair times are distributed quite generally. Initially all the units are operating. The system breaks down if more than (N-K+1) units in the parallel group are simultaneously in the failed states or if any failure occures in the series group. The availability and reliability function of the system under several repair disciplines are obtained simultaneously. We use a suitable transformation to deduce the reliability from the availability function. Explict expressions for the steady-state availability of the system and the mean time to system failure under several repair disciplines are obtained. Finally some properties of the steady-state availability for each repair discipline are given.  相似文献   

7.
This paper analyses a two-unit cold standby system under the assumption that each unit works in three different modes—normal, partial failure and total failure. Failure time distributions of units are exponential, whereas repair time distributions are arbitrary. Breakdown of the system occurs when both the units are in total failure mode. Several reliability characteristics of interest to system designers as well as operations managers have been evaluated.  相似文献   

8.
The Laplace-Stieltjes (LS) transform for the distribution of time to first system failure (TFSF), transition probability, availability and mean time to system failure have been derived for two unit repairable redundant standby system with perfect as well as imperfect switchover condition. General expressions for computing various reliability performance indices have been obtained by using Markov Renewal techniques considering general distributions for time to failure and time to repair for the units.  相似文献   

9.
A class of repairable systems known as k-out-of-n:F systems, 1 ? k ? n, consists of n units in parallel redundancy which are serviced by a single repairman; system failure occurs when k units are simultaneously inoperable for the first time. In this paper, assuming constant failure rates and general repair distributions, reliability characteristics of the k-out-of-n:F system are treated using two different methods. In Part I, a conditional transform approach is applied to the 2-out-of-n:F system. Transforms of distributions are obtained for T (the time to system failure), the time spent on repairs during (0, T) and the free time of the repairman during (0, T). In Part II, the supplementary variable technique is used to investigate time to failure characteristics of the k-out-of-n:F system for k = 2 and k = 3. A model of an airport limousine service illustrates the use of the results.  相似文献   

10.
A single-server two-unit standby system with two modes of each unit—normal and total failure—is considered. The standby units are repeatedly interconverted after a random time from warm to cold and cold to warm. Upon failure of the operative unit, the standby unit, if it is warm, starts to operate instantaneously; otherwise, the system goes down until the cold standby starts to operate. System failure occurs when both units fail totally. Identifying the system at suitable regenerative epochs, the integral equations are set up and the expressions for reliability and mean time to system failure (MTSF) are obtained. The graphical behaviour of MTSF is also studied in a particular case.  相似文献   

11.
A new probabilistic model representing an “n” units non-repairable system with “k” units operating and (nk) units kept in stand-by mode (as partially energized) is represented in this paper. Human error, common cause and switching system failure are also considered in this modelling. The mathematical expression for state probabilities, reliability, mean time to failure and variance of time to failure is formulated. Numerical results are also presented to demonstrate the effect on unreliability and mean time to failure due to variation of redundancy in stand-by mode.  相似文献   

12.
This paper deals with the stochastic behaviour of a two-dissimilar unit cold standby redundant system with random change in units. In this system each unit works in two different modes—normal and total failure. It is assumed that the failure, repair, post repair, interchange of units and inspection times are stochastically independent random variables, each having an arbitrary distribution. The system is analysed by the semi-Markov process technique. Some reliability measures of interest to system designers as well as operations managers have been obtained. Explicit expressions for the Laplace-Stieltjes transforms of the distribution function of the first passage time, mean time to system failure are obtained. Certain important results have been derived as particular cases.  相似文献   

13.
A mathematical model is established for the reliability of modularly redundant systems with repair. The model allows different hazard rates for active units and for standby units. The hazard rates are assumed to be constant. The cases of constant repair rate and constant repair time for a two unit system are evaluated using the reliability and mean time between failure. The approach is then extended to systems with more than two units. A system parameter, relating to certain types of sensing, switching, and/or recovery has a very significant impact on system reliability for modularly redundant systems with repair.  相似文献   

14.
A hot standby system composed of two non-identical units is analysed under the assumption that each unit works in three possible modes—normal, partial failure and total failure. For each unit the failure time distribution is negative exponential and the repair time distribution is arbitrary. Breakdown of the system occurs when both the units are in total failure mode. There is only one repair service and when both the units are in the same mode, priority is given to the first unit in the matter of operation as well as repair. Several reliability characteristics of interest to system designers and operations managers have been evaluated.  相似文献   

15.
This paper presents a model representing a two units active and one unit on standby human-machine system with general failed system repair time distribution. In addition, the model takes into consideration the occurrence of common-cause failures. The method of linear ordinary differential equation is presented to obtain general expressions for system steady state availability for failed system repair time distributions such as Gamma, Weibull, lognormal, exponential, and Rayleigh. Generalized expressions for system reliability, time-dependent availability, mean time to failure, and system variance of time to failure are also presented. Selected plots are presented to demonstrate the impact of human error on system steady state availability, reliability, time-dependent availability, and mean time to failure.  相似文献   

16.
A technique is developed for finding the time dependent operating probabilities used by reliability systems designers for provisioning a system with N + k identical units, k of which are called spares and N called operating units, and s repair facilities. System failure occurs when less than N units are operational. Units fail with exponential interfailure times and are repaired with exponential service time. Idle spares fail due to deterioration at a rate possibly different from that of the operating units. Graphs are presented which show the minimum numbers of spares needed to achieve system reliabilities of 0.90 and 0.99 as a function of time. The technique is applicable for finding, numerically, the first passage time distribution for any system modeled by birth and death processes.  相似文献   

17.
A two-unit warm standby system is discussed, in which units are identical. Partial failure and complete failure of a unit can be detected by inspection from time to time. The inspection time follows an exponential distribution, whereas the repair and failure time follows an exponential and arbitrary distribution. Several reliability characteristics of interest to system designers and operation managers have been evaluated.  相似文献   

18.
A standby redundant system of two dissimilar units is considered under the assumptions that both the failure and the repair time distributions are arbitrary. The system states are defined corresponding to the failure of the specified units. The first passage time distributions, the expected numbers of visits to a certain state, the transition probabilities, and the limiting probabilities are obtained using the unique modifications of the regeneration point techniques in Markov renewal processes. Two particular cases are finally presented.  相似文献   

19.
This paper discusses the stochastic behaviour of a two-unit cold standby redundant system under two very general sets of conditions: (i) each unit of the system having three different modes of working—normal, partial failure and total failure; (ii) breakdown of the system occurring when with both the units in total failure mode, the system is not regarded as failed (the system fails only when the breakdown does not terminate within the allowed down time). Failure-time distributions of units are exponential, whereas repair time distributions are arbitrary. Several reliability characteristics of interest to system designers as well as operations managers have been evaluated.  相似文献   

20.
In this paper, an electronic system consisting of two subsystems connected in series has been considered. One subsystem consists of two identical units connected in parallel while the other subsystem has only one unit. The system is to be in any of the three states: good, degraded and failed. The system suffers two types of failures, viz; unit failure and failure due to critical human error. The system can be repaired when it fails due to the failure of the units in the subsystems and cannot be repaired when it fails due to critical human errors. The repair for the system in any state follows general distribution. To make the system more applicable to practical life problems, time dependent probabilities have been evaluated so as to forecast the expected profit and the operational availability of the system at any time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号