首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper proposes a measurement technique for two-phase bubbly and slug flows using ultrasound. In order to obtain both liquid and gas velocity distributions simultaneously, a new technique for separating liquid and gas velocity data is developed. The technique employs a unique ultrasonic transducer referred to as multi-wave transducer (TDX). The multi-wave TDX consists of two kinds of ultrasonic piezoelectric elements which have different resonant frequencies. The central element of 3 mm diameter has a basic frequency of 8 MHz and the outer element has a basic frequency of 2 MHz. The multi-wave TDX can emit the two ultrasonic frequencies independently. In our previous investigations, both elements were connected with two ultrasonic velocity profile (UVP) monitors to measure liquid and bubble velocity distributions. However, the technique was limited to the measurement of bubbly flows at low void-fraction. Furthermore, it was impossible to synchronize the instantaneous velocities of liquid and bubbles because of the facility limitation. In order to overcome these disadvantages, cross-correlation method is employed for the measurements in this study. In order to apply the technique to flow measurements, ultrasound pressure fields are measured. As a result, it is found that the TDX must be set 20 mm away from the test section. The technique is applied to measuring bubbly and slug flows. By the combination of 2 and 8 MHz ultrasonic echo signals, the echo signals are distinguished between reflected from particles and bubbles. Compared with the results of obtaining with the multi-wave method and a high-speed camera, it is confirmed that the technique can separate the information of liquid and gas phases at a sampling rate of 1000 Hz.  相似文献   

2.
The use of Coriolis mass flow metering for two-phase (gas/liquid) flow is an emerging theme of both academic research and industrial application. The key issues are maintaining flow-tube operation, and modelling and correcting for the errors induced in the mass flow and density measurements. Experimentally-derived data is used to illustrate that these errors vary most notably with gas void fraction (GVF) and liquid flow rate, but other factors such as flow-tube geometry and orientation, and fluid properties such as viscosity are also influential. While undoubtedly a universal two-phase flow correction model is the ultimate research goal, there is currently no obvious candidate to explain the range of behaviours observed. This paper describes and demonstrates an empirical methodology that has proven effective in developing good correction models for a given choice of Coriolis flow-tube and flow mixture.

A growing proportion of the world’s oil reserves may be described as “heavy”, implying high density and high viscosity. Of the various metering challenges heavy oil poses, one of the most significant is its ready entrainment of gas, and the difficulties entailed in separating gas from the oil. Accurate two-phase measurement of heavy oil is therefore an especially desirable technical goal.

Trials were carried out at the National Engineering Laboratory (NEL), Scotland on a 75 mm flowmeter using a high viscosity oil. Flowrates from 1 kg/s to 10 kg/s were examined, with gas void fraction (GVF) up to 80%. The resulting models were tested online in a commercial Coriolis mass flow meter and demonstrated good performance for both steady and slugging two-phase flows, with the corrected measurements typically within 1%–5% of the nominal mass flow and density.

Field trials in Venezuela have confirmed the performance of this two-phase solution.

While research continues into the development of a generic two-phase correction, this case study demonstrates that the current state of the art can provide, for economically important fluids, tailored models with good two-phase flow performance.  相似文献   


3.
An image enhancement technique for a visualization of gas–liquid metal two-phase interfaces is developed for a real time neutron radiography (RTNR) technique, where the dynamic motion of bubbles inside liquid metal cannot be observed optically. The proposed image enhancement technique consisted of noise reduction, pipe–fluid interface determination, and image smoothing procedures. The results show that the RTNR technique is able to visualize the dynamics of gas–liquid metal interfaces, and also is able to determine more accurate two-phase flow parameters such as void fraction.  相似文献   

4.
An experimental study of kerosene–water upward two-phase flow in a vertical pipe was carried out using hot-film, dual optical and Pitot tube probes to measure the water, kerosene drops and mixture velocities. Experiments were conducted in a vertical pipe of 77.8 mm inner diameter at 4.2 m from the inlet (L/D=54). The tests were carried out for constant superficial water velocities of 0.29, 0.59 and 0.77 m/s (flow rates = 83, 167 and 220 l/min) and volume fractions of 4.2%, 9.2%, 18.6% and 28.2%. The Fluent 6.3.26 was used to model the single and two-phase flow and to reproduce the results for the experimental study. Two methods were used to evaluate the accuracy of the probes for the measurement of the velocities of water, drops and mixture for two-phase flow: (i) comparison of measured local velocities with predictions from the CFD simulation; (ii) comparison between the area-averaged velocities calculated from the integration of the local measurements of water, drops and mixture velocities and velocities calculated from flow meters’ measurements.The results for single phase flow measured using Pitot tube and hot-film probe agree well with CFD predictions. In the case of two-phase flow, the water and drops velocities were measured by hot-film and dual optical probes respectively. The latter was also used to measure the volume fraction. These three measured parameters were used to calculate the mixture velocity. The Pitot tube was also used to measure the mixture velocity by applying the same principle used for single phase flow velocity. Overall the mixture local velocity measured by Pitot tube and that calculated from hot-film and dual optical probe measurements agreed well with Fluent predictions. The discrepancy between the mixture area-averaged velocity and velocity calculated from flow meters was less than 10% except for one test case. It is concluded that the combined hot-film and optical approach can be used for water and drop velocity measurements with good accuracy for the flow conditions considered in this study. The Pitot tube can also be used for the measurement of mixture velocities for conditions of mixture velocities greater than 0.4 m/s. The small discrepancy between the predictions and experimental data from the present study and literature demonstrated that both instrumentation and CFD simulations have the potential for two-phase flow investigation and industrial applications.  相似文献   

5.
Wire-mesh sensors (WMS), developed at HZDR [4], [13], are widely used to visualize two-phase flows and measure flow parameters, such as phase fraction distributions or gas phase velocities quantitatively and with a very high temporal resolution. They have been extensively applied to a wide range of two-phase gas–liquid flow problems with conducting and non-conducting liquids. However, for very low liquid loadings, the state of the art data analysis algorithms for WMS data suffer from the comparably low spatial resolution of measurements and from boundary effects, caused by e.g. flange rings – especially in the case of capacitance type WMS. In the recent past, diverse studies have been performed on two-phase liquid–gas stratified flow with low liquid loading conditions in horizontal pipes at the University of Tulsa. These tests cover oil–air flow in a 6-inch ID pipe and water–air flow in a 3-inch ID pipe employing dual WMS with 32×32 and 16×16 wires, respectively. For oil–air flow experiments, the superficial liquid and gas velocities vary between 9.2 m/s≤νSG≤15 m/s and 0.01 m/s≤νSL≤0.02 m/s, respectively [2]. In water–air experiments, the superficial liquid and gas velocities vary between 9.1 m/s≤νSG≤33.5 m/s and 0.03 m/s≤νSL≤0.2 m/s, respectively [17], [18]. In order to understand the stratified wavy structure of the flow, the reconstruction of the liquid–gas interface is essential. Due to the relatively low spatial resolution in the WMS measurements of approximately 5 mm, the liquid–gas interface recognition has always an unknown uncertainty level. In this work, a novel algorithm for refined liquid–gas interface reconstruction is introduced for flow conditions where entrainment is negligible.  相似文献   

6.
This work describes the procedure used to define the measurement uncertainties of horizontal two-phase air-water flow experiments conducted to determine influences due to pipe diameter on pressure gradient on such flows. These experiments were performed with 4 different pipe diameters, always using the same test section length, therefore varying the length-to-diameter (L/D) ratio. Several parameters were measured, such as volumetric/mass flow rate, pressures, temperatures and pressure drop; other parameters were calculated, such as the superficial velocities of each fluid, as well as their corresponding properties. The main parameters studied were the flow patterns for different velocity configurations and the two-phase pressure drop to be used for model improvement, thus the importance of uncertainties analysis. The sources of uncertainty were defined, detailed, systematically studied and quantified. Also, the reproducibility capacity of the experimental setups were analysed through the uncertainty analysis and proving them to be able for future similar studies. The flow maps with their uncertainties could help understand the thresholds for each defined flow pattern region, and the plots of two-phase pressure drop variation with diameter confirmed the homogeneous model as a possible approach to calculate pressure drop if the uncertainties are considered.  相似文献   

7.
Slug flow is a common flow regime that occurs in various industries, such as oil, gas, and power generation industries. In this study, the mean slug translational velocity and slug liquid length were measured using Phantom 9.2 software and an image processing analysis technique. The adopted image processing technique involved the analysis of video frames recorded from a high-speed camera (Phantom 9.2) in a horizontal transparent pipe using a combination of the approximate median method and blob analysis, along with an additional morphological process for detecting and segregating individual slugs. The experimental data were obtained from a designed two-phase flow test section, in which sets of superficial water and air velocities were selected to generate numerous slug flows. A good agreement with a maximum deviation of 6.7% between the estimated slug parameters from the adopted technique and the Phantom cine view controller software was achieved. Additionally, the developed technique provided precise results with a high processing speed of 10 frames per second.  相似文献   

8.
Two-phase flows are complex and unpredictable in nature, commonly encountered in a majority of fluid transport systems. The accurate measurement of two-phase flow is critical for a wide range of applications from wet stream to multiphase flows. There are different methods to meter two-phase flow in various industries. One approach is to produce a flow meter that does not require the individual flow components to be separated and measured separately. This goal can be met if a homogenized mixture is produced which can be measured by a standard single phase flow meter. The slotted orifice plate was invented as a flow meter for single phase flows, it is independent upon upstream flow conditions. Slotted orifice plate flow meter's utilization in two-phase flow revealed that it is highly capable of working as a flow conditioner transforming most of the multiphase flow regimes into a fairly uniform mixture. This study measures how the relative homogeneity of an air/water mixture varies downstream of the slotted plate in a horizontal pipe for various upstream conditions including elongated bubble and slug flow regimes using electrical resistance tomography (ERT). According to this study, the optimal location with a maximum homogeneity was determined to be between 1.5 and 2.5 pipe diameters downstream of the slotted orifice plate. This indicates that placing a slotted orifice plate at the obtained distance upstream of another flow meter such as a venturi coupled with a density measuring device like a radiation based densitometer or an electrical impedance device will help in obtaining accurate multiphase flow rate measurement.  相似文献   

9.
Previous work has described the use of Coriolis mass flow metering for two-phase (gas/liquid) flow. As the Coriolis meter provides both mass flow and density measurements, it is possible to resolve the mass flows of the gas and liquid in a two-phase mixture if their respective densities are known. To apply Coriolis metering to a three-phase (oil/water/gas) mixture, an additional measurement is required. In the work described in this paper, a water cut meter is used to indicate what proportion of the liquid flow is water. This provides sufficient information to calculate the mass flows of the water, oil and gas components. This paper is believed to be the first to detail an implementation of three-phase flow metering using Coriolis technology where phase separation is not applied.Trials have taken place at the UK National Flow Standards Laboratory three-phase facility, on a commercial three-phase meter based on the Coriolis meter/ water cut measurement principle. For the 50 mm metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil+water) liquid mass flow error should fall within ±2.5%, and the gas mass flow error within ±5.0%. The oil mass flow error limit is ±6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ±15.0%.These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.  相似文献   

10.
Backlight imaging tomography is used to experimentally investigate interfacial structures of gas–liquid two-phase flow in circular tubes. The tomography method is based on the attenuation of visible light that causes the inside of the liquid phases to be colored with dye. Increasing the number of light projections provides accurate phase distributions to be reconstructed by a linear backward projection scheme. After the reconstruction performance is examined with numerical simulations for several test cases, the method is applied to slug flows that have complicated 3D interfaces from turbulence. Interfacial structures are compared between straight and helical tubes to determine the effect of centrifugal acceleration. The result demonstrates that centrifugal acceleration provides a liquid-clinging layer on the inner wall against gravity while a high-speed collision of liquid with the top wall happens in a straight tube.  相似文献   

11.
Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography system (ERT) is used in combination with a commercial off-the-shelf Electromagnetic Flow meter (EMF) to measure the volumetric flow rate of each constituent phase. The water flow rate is determined from the EMF with an input of the mean oil-fraction measured by the ERT. The dispersed oil-phase flow rate is determined from the mean oil-fraction and the mean oil velocity measured by the ERT cross-correlation velocity profiling. Experiments were carried out on a vertical upward oil-in-water pipe flow, 50 mm inner-diameter test section, at different total liquid flow rates covering the range of 8–16 m3/hr. The oil and water flow rate measurements obtained from the ERT and the EMF are compared to their respective references. The accuracy of these measurements is discussed and the capability of the measurement system is assessed.  相似文献   

12.
In refrigeration cycles, quality measurement of two-phase refrigerant flow is required to monitor the cycle operation. Although sectional void fraction of the two-phase flow can be detected in several ways, the quality of the two-phase flow is hardly obtained from the sectional void fraction since velocities of liquid- and gas-phase in the pipe are different from each other. In this study, a new quality measuring method was developed by installing multiple narrow tubes in a test section. By installing a gas bypass tube with the multiple narrow tubes, the quality measurement having an accuracy within 0.03 was achieved in the quality range from 0.05 to 0.8. In addition, the influence of oil contamination in the refrigerant flow on the flow pattern in the narrow tube was examined. It was found that the flow pattern in the narrow tube became bubble flow by the mixing of oil.  相似文献   

13.
In this work, a comparison of Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurement methods was made applied to oil–water two-phase flow in a horizontal pipe. The experiments were conducted in a 15 m long, 56 mm diameter stainless steel pipe using Exxsol D60 oil (density 790 kg/m3 and viscosity 1.64 mPa s) and water (density 996 kg/m3 and viscosity 1.0 mPa s) as test fluids. The experiments were performed at different mixture velocities and water cuts. Mixture velocity and water cut vary up to 1.06 m/s and 0.75, respectively. The instantaneous local velocities were measured using PIV and LDA, and based on the instantaneous local velocities mean velocities and turbulence profiles are estimated. The measurements are performed in the vertical plane through the pipe center. A double-pulsed Nd:yttrium aluminium garnet (YAG) laser and a high-speed camera with 1260×1024 px resolution (1.3 Mpx) were used for the PIV measurements. The LDA set-up is a two-colour backscatter system with 3 W Argon-Ion Laser. The time averaged cross-sectional distributions of oil and water phases were measured with a traversable gamma densitometer. The measured mean axial velocity and turbulence profiles using PIV were observed to compare favourably well with LDA measurements. Nevertheless, the PIV measurements are more sensitive for optical disturbances in the dispersed region close to the oil–water interface. Hence, this region cannot be confidently analyzed using PIV, whereas LDA offers full-field measurements even at higher mixture velocities.  相似文献   

14.
Two-phase flow measurements are very common in industrial applications especially in oil and gas areas. Although some works in image segmentation have analyzed gas–liquid slug flow along vertical pipes, few approaches have focused on horizontal experiments. In such conditions, the detection of the Taylor bubble is challenging due the great amount of small bubbles in the slug area and, thus, requires a special treatment in order to separate gas from liquid phases. This article describes a new technique that automatically estimates bubble parameters (e.g. frequency, dimension and velocity) through video analysis of high-speed camera measurements in horizontal pipes. Experimental data were obtained from a flow test section where slug flows were generated under controlled conditions. Image processing techniques such as watershed segmentation, top-hat filtering and H-minima transform were applied to detect and estimate bubble contour and velocities from the observed images. Finally, the estimated parameters were compared to theoretical predictions, showing good agreement and indicating that the proposed technique is a powerful tool in the investigation of two-phase flow.  相似文献   

15.
The slug flow is a common occurrence in gas–liquid piping flows. Usually it is an undesirable flow regime since the existence of long lumps of liquid slug moving at high speed is unfavorable to gas–liquid transportation, so that considerable effort has been devoted to study its hydrodynamic characteristics. In this work, a capacitive probe was used for dynamic measurements in the horizontal air–water slug flows, for several flow rates. The acquired signals were representative of the effective liquid layer thickness near every cross sectional area of the flow, instead of merely the holdup or void fraction in a finite volume of the flow. This was possible because probe had a thin sensing electrode that minimizes the axial length effect on the measurements. Tests were performed in a 34 mm i.d. acrylic pipe, 5 m long; in which slug flows as well as stratified-smooth and stratified-wavy flows were generated. Signal analysis techniques were applied for flow regime identification and toward characterization of these two-phase flows: Power Spectrum Density (PSD) from Fourier Transform and Probability Density Function (PDF) from Statistical Analysis. Therefore, PSD and PDF graphs were taken as signatures of each flow under test and a correlation was calculated for each PSD and PDF set of data, which showed to be a robust parameter for correct flow regime identification.  相似文献   

16.
Heat transfer coefficients were measured and new correlations were developed for two-phase heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe (2.54 cm I. D. and L/D=96) using an air/water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the How regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wail heat 11 ux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air-water heat transfer experimental data with good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

17.
The phenomenon of erosion wear due to the cutting action of solid particles in solid–liquid mixture flows has been studied in a slurry pot tester. Special fixtures and design modifications were incorporated in a slurry pot tester in order to ensure that the erosive wear on the wear piece is primarily due to parallel flow of the mixture. Experiments performed at various solid concentrations, particle sizes and velocities, show that the parallel flow wear increases with increase in solid concentration, particle size and velocity. The parametric dependence on velocity is comparatively much stronger as compared to that on either solid concentration or particle size.  相似文献   

18.
An inductive flow sensor with spot-shaped electrodes (IFS-SE) is sensitive to the shape of the flow profile and is restricted to be used to measure the flow rate of axisymmetric single-phase flows in a circular pipe. In many cases of application, it is not possible to provide a fully developed flow profile. Therefore, the inductive flow sensor has to cope with flow profiles that are not fully developed. To improve the accuracy, an inductive flow sensor with a pair of arc-shaped electrodes flush-mounted on the internal surface of an insulating section of a pipe is proposed in this article to investigate the characteristics of vertical gas-water two-phase flows. The effect of the flow profile on the inductive flow sensor is analyzed. A key contribution of the present work is to estimate the relationship between the induced voltage and the velocity of the conductive phase in two-phase flows. The estimation is achieved by the analytical calculation of magnetic-inductive equations through the method of variables separation. The analytical solution is compared with the results from an ideal model and from numerical simulation. Experiments are conducted to calibrate the inductive flow sensor with arc-shaped electrodes (IFS-AE). It is noted that the proposed IFS-AE can be adopted to obtain the velocity of the conductive phase in two-phase flows by measuring the voltage induced on the arc-shaped electrodes.  相似文献   

19.
A highly sensitive electrical capacitance tomography (ECT) system based on an HP4284 impedance analyser has been developed and used to quantify low concentration multi-phase flows in wet gas separation processes. The system hardware provides high accuracy (0.05%) and high resolution (10−17 F). The sensor was calibrated in an environmental chamber with solid samples of known permittivity over ranges of temperature and humidity. Adaptive calibration and adjacent electrode pair correction techniques were applied to image very low concentration profiles. This paper describes the techniques used and presents the experimental results obtained from a test flow rig called Twister, which has been designed to separate liquid droplets from wet gas streams. The test results over a range of operating conditions (20–95% humidity) demonstrate that the ECT system is capable of reconstructing clear images of the droplet distribution inside Twister. Changes as small as 1 gWater/kgAir in the form of liquid droplets were detectable. It has also been shown that the concentration of the condensable phase can be estimated quantitatively within 20% in comparison with the reference measurements.  相似文献   

20.
In order to investigate the characteristics of an electromagnetic flowmeter in two-phase flow, an alternating-current electromagnetic flowmeter was designed and manufactured. The signals and noise from the flowmeter under various flow conditions were obtained, and analyzed in comparison with the flow patterns observed with a high-speed charge-coupled device camera.

An experiment with void simulators, in which a rod-shaped non-conducting material was used, was carried out to investigate the effect of bubble position and void fraction on the flowmeter. Two-phase flow experiments, encompassing bubbly to slug flow regimes, were conducted with a water–air mixture.

The simple relation ΔUTPUSP/(1−), relating the flowmeter signal between single-phase flow and two-phase flow, was verified with measurements of the potential difference and the void fraction for a bubbly flow regime. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement increased slightly with increasing void fraction and superficial liquid velocity jf.

Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of the slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号