共查询到19条相似文献,搜索用时 46 毫秒
1.
基于模糊最近邻的高维数据聚类 总被引:3,自引:0,他引:3
提出一种基于模糊最近邻的聚类算法(简称FNNC算法).FNNC算法通过加权共享最近邻图来形成簇,而且仅仅使用对象图中一些有用的连接.本文通过实验验证了FNNC算法在高维数据聚类中的有效性. 相似文献
2.
于秀清 《计算机工程与应用》2011,47(2):46-48
在P-集合(XF,XF)的基础上,给出了系统状态规律曲线生成模型,得到了系统的P-规律曲线(pF(x),pF(x))与系统状态偏离预测定理、系统状态不可分辨定理;并给出了表示系统偏离标准状态程度的量—P-偏离度(PDDF,PDDF)、系统状态预测模型及应用。 相似文献
3.
近邻传播聚类(AP)方法是近年来出现的一种广受关注的聚类方法,在处理多类、大规模数据集时,能够在较短的时间得到较理想的结果,因此与传统方法相比具有很大的优势。但是对于一些聚类结构复杂的数据集,往往不能得到很好的聚类结果。通过分析数据的聚类特性,设计了一种可以根据数据结构自动调整参数的核函数,数据集在其映射得到的核空间中线性可分或几乎线性可分,对该核空间中的数据集进行近邻传播聚类,有效提高了AP聚类的精确度和速度。算法有效性分析以及仿真实验验证了所提算法在处理大规模复杂结构数据集上的性能优于原始AP算法。 相似文献
4.
5.
传统的聚类算法是一种无监督的学习过程,聚类的精度受到相似性度量方式以及数据集中孤立点的影响,并且算法也没有很好的利用先验知识,无法体现用户的需求。因此提出了基于共享最近邻的孤立点检测及半监督聚类算法。该算法采用共享最近邻为相似度,根据数据点的最近邻居数目来判断是否为孤立点,并在删除孤立点的数据集上进行半监督聚类。在半监督聚类过程中加入了经过扩展的先验知识,同时根据图形分割原理对数据集进行聚类。文中使用真实的数据集进行仿真,其仿真结果表明,本文所提出的算法能有效的检测出孤立点,并具有很好的聚类效果。 相似文献
6.
在谱聚类算法没有先验信息的情况下,对于具有复杂形状和不同密度变化的数据集很难构建合适的相似图,且基于欧氏距离的高斯核函数的相似性度量忽略了全局一致性.针对该问题,提出一种基于共享最近邻的密度自适应邻域谱聚类算法(SC-DANSN).通过一种无参数的密度自适应邻域构建方法构建无向图,将共享最近邻作为衡量样本之间的相似性度... 相似文献
7.
为了在聚类数不明确的情况下实现聚类分析,提出一种新的结合最近邻聚类和遗传算法的动态聚类算法.新算法包括两个阶段:第一阶段用最近邻聚类算法根据最近邻方法把最相似的实例分到同一个簇中并根据一些相似性或相异性度量过滤掉噪声数据从而得到初始聚类集,第二阶段是遗传优化阶段,利用动态聚类评估函数,动态地合并初始聚类集,从而获得接近最优的解.最后对算法进行了实验仿真,实验结果表明方法在事先不知道聚类数的情况下能够有效地进行聚类. 相似文献
8.
基于改进的凝聚性和分离性的层次聚类算法 总被引:4,自引:0,他引:4
由于传统的数据聚类算法都是在单一表上进行,因此如何在多表中进行聚类是现在聚类分析的一个新方向.提出了一种基于改进的凝聚性和分离性的层次聚类算法--ICCSH(a hierarchical clustering algorithm based on improved cluster cohesion and separation),该算法首先通过ID传播把关系数据库中的各个表联系起来,再通过计算共享最近邻的相似度和改进的凝聚性算法将数据对象聚类为大量相对较小的子聚类,然后通过计算改进的簇间分离性合并子类来找到真正的结果簇.实验表明,该算法不仅运行时间相对较短,具有较强的可伸缩性,还可以得到较高精确的聚类结果. 相似文献
9.
通过学习数据集的低维流形结构,给出一种流形距离测度;结合成对约束信息,调整数据的相似度矩阵,将其作为近邻传播算法的输入,提出了基于流形距离的半监督近邻传播聚类算法(SAP-MD)。通过在UCI标准数据集上的仿真实验表明,SAP-MD算法相比于仅利用成对约束信息的聚类算法,在聚类性能上有很大提高。 相似文献
10.
11.
12.
本文针对传统SURF (Speeded Up Robust Features)算法精度和速度较低的问题, 提出一种优化的图像匹配算法. 在特征点提取阶段引入局部二维熵来刻画特征点的独特性, 通过计算特征点的局部二维熵并设置合适的阈值来剔除一部分误点; 在匹配阶段用曼哈顿距离代替欧式距离, 并引入最近邻和次近邻的概念, 提取出模板图像中特征点与待匹配图像中特征点曼哈顿距离最近的前两个点, 如果最近的距离除以次近的距离得到的比值小于设定的阈值T, 则接受这一对匹配对, 以此减少错误匹配. 实验结果表明该算法优于传统算法, 精度和速度均有一定程度的提高. 相似文献
13.
为实现日常生活中动作的识别,以提高家庭服务机器人的服务质量,为人类提供安全舒适的环境,提出了一种基于马氏距离的度量学习方法进行人体动作的识别.首先,利用Kinect获取人体动作的关节点数据.然后,基于关节点数据构建动作敏感特征集合,即由人体的关节点坐标构造人体的结构向量以及相应的角度,并对每一样本的长度进行归一化处理.采用大间隔最近邻(LMNN)分类算法进行马氏距离学习得到变换矩阵L,将归一化之后的原始数据映射到更优特征空间.最后,采用k近邻算法进行动作识别.在自建的数据集上,得到97%的识别率.实验结果表明,LMNN算法能够改善数据的分布,即缩小类内距离,扩大类间距离,较好地完成人体动作识别的任务. 相似文献
14.
15.
当今社会处在信息急剧膨胀的时代,数据的规模和维度都在不断增大,传统的聚类方法有很多难以适应这一趋势.尤其是移动计算平台的高速发展,其平台自身的特性限制了算法的内存使用规模,因此,以往的很多方法若不进行改进,在这类平台上将无法运行.提出了一种基于近邻表示的聚类方法,该方法基于近邻的思想构造出新的表示形式,这种表示可以进行压缩,因此有效地减少了聚类所需要的存储开销.实现了直接对近邻表示压缩后的数据进行聚类的算法,称为Bit k-means.实验结果表明,该方法取得了较好的效果,在提高准确率的同时,大幅度降低了存储空间开销. 相似文献
16.
针对近邻传播聚类算法不能处理混合属性数据集的问题,提出了一种新的距离度量测度,并将其应用到近邻传播聚类算法中,提出了一种基于维度属性距离的混合属性近邻传播聚类算法。与传统聚类算法不同的是,该算法不需要计算虚拟的中心点,同时考虑了数据集整体分布对聚类结果的影响。将算法在UCI数据库的2个混合属性数据集上进行验证,同时对比了经典的K-Prototypes算法以及K-Modes算法。实验结果表明,改进后的算法具有更好的聚类质量以及执行效率,算法的优越性得到了验证。 相似文献
17.
18.
为了提升障碍空间中k最近邻查询的效率,研究了障碍空间中基于Voronoi图的k最近邻查询方法,提出了在障碍空间基于Voronoi图的kNN-Obs算法。该算法采用了两个过程:过滤过程和精炼过程。过滤过程主要是利用Voronoi图的过滤功能,较大程度地减少了被查询点的个数。精炼过程主要根据障碍距离和邻接生成点对候选集内对象进行第二次筛选。进一步给出了处理新增加点的ADDkNN-Obs算法和处理删除点的DENkNN-Obs算法。实验表明该算法在处理障碍空间中的k最近邻问题时具有优势。 相似文献
19.
针对非局部相似块搜索问题,提出一个基于随机匹配的k近邻块匹配算法.在基于Jump Flooding传播的块匹配算法基础上,改进其候选参考块的产生方式,增加从查询块的局部邻域中随机产生候选参考块这一方式.这一改进提高了候选参考块匹配的可能性,进而提高了算法的匹配精确度.实验结果表明改进算法在时间效率和并行性上,与原算法相差不大,但在匹配精确度上,要优于原算法. 相似文献