共查询到20条相似文献,搜索用时 62 毫秒
1.
特征选择是模式识别系统的难点.针对高维数据对象,先运用改进粒子群优化(PSO)算法快速、有效地从特征样本中提取一组最优特征子集,然后采用最小二乘支持向量机(LSSVM)分类器对最优特征子集进行分类,验证特征选择的好坏.经大量实验验证,在保证分类正确率的前提下,该方法有效提高了特征选择效率. 相似文献
2.
基于二进制PSO算法的特征选择及SVM参数同步优化 总被引:3,自引:0,他引:3
特征选择及分类器参数优化是提高分类器性能的两个重要方面,传统上这两个问题是分开解决的。近年来,随着进化优化计算技术在模式识别领域的广泛应用,编码上的灵活性使得特征选择及参数的同步优化成为一种可能和趋势。为了解决此问题,本文研究采用二进制PSO算法同步进行特征选择及SVM参数的同步优化,提出了一种PSO-SVM算法。实验表明,该方法可有效地找出合适的特征子集及SVM参数,并取得较好的分类效果;且与文[4]所提出的GA-SVM算法相比具有特征精简幅度较大、运行效率较高等优点。 相似文献
3.
针对大型化工过程生产系统的高维度数据及其噪声严重影响故障诊断的性能,采用基于故障特征选择和支持向量机(SVM)的故障诊断方法.为了确保在线故障诊断的实时性和准确性,提出一种新型的混沌耗散离散粒子群(CDDPSO)算法,用于故障诊断中特征变量的搜索.仿真结果表明,CDDPSO算法能有效地搜索到全局最优解,而基于故障特征选择的故障诊断方法具有良好的故障诊断性能. 相似文献
4.
一种改进的基于粒子群优化的SVM训练算法 总被引:1,自引:2,他引:1
支持向量机的训练需要求解一个带约束的二次规划问题,但在数据规模很大的情况下,经典的训练算法将会变得非常困难。提出了一种改进的基于粒子群的优化算法,用于替代支持向量机中现有的训练算法。在改进后的粒子群优化算法中,粒子不仅向自身最优和全局最优学习,还以一定的概率向其他部分粒子的均值学习。同时,还引进了自适应变异算子,以降低未成熟收敛的概率。实验表明,提出的改进训练算法相对改进前的算法在性能上有显著提高。 相似文献
5.
6.
研究瓦斯涌出量预测问题,瓦斯涌出量受到开采深度、通风系统等多种因素影响,是一种复杂的非线性预测问题,传统预测方法难以建立准确数学模型,导致预测精度低。为了有效提高瓦斯涌出量预测精度,提出一种非线性的瓦斯涌出量预测算法。采用粒子群优化支持向量机对瓦斯涌出量与各种因素之间非线性关系进行建模,并对瓦斯涌出量预测进行仿真。结果表明,非线性预测算法有效提高了瓦斯涌出量的预测精度,降低了预测误差,对有效防止瓦斯爆炸有重要意义。 相似文献
7.
针对最小二乘支持向量机特征选择及参数优化问题,提出了一种基于PSO的LS-SVM特征选择与参数同步优化算法。首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化。在UCI标准数据集上进行的仿真实验表明,该算法可有效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果。 相似文献
8.
一种基于SMO算法的垃圾邮件过滤系统设计 总被引:1,自引:0,他引:1
垃圾邮件问题日益严重,给人们带来了极大困扰.基于SMO算法的垃圾邮件过滤方法将统计方法应用到垃圾邮件的判定上,是进行垃圾邮件处理的有效手段.本文介绍了基于SMO算法的垃圾邮件过滤系统模型,并对中文分词、特征选择、SMO算法等关键技术进行了阐述.SMO算法的引入势必会使系统在高效过滤垃圾邮件的同时,提高处理数据的速度. 相似文献
9.
网络入侵检测一直是计算机网络安全领域的研究热点,当前网络面临着诸多的安全隐患。为了提高网络入侵检测的准确性,首先对粒子群优化(Particle Swarm Optimization,PSO)算法进行了改进,然后利用改进的PSO算法(IPSO算法)对支持向量机(Support Vector Machine,SVM)的参数进行了优化,并在此基础上设计了一种新型的基于IPSO-SVM算法的网络入侵检测方法。实验结果表明,相比于经典的SVM和PSO-SVM算法,IPSO-SVM算法不仅 明显改善了网络训练的收敛速度,而且其网络入侵检测的正确率分别提高了7.78%和4.74%,误报率分别降低了3.37%和1.19%,漏报率分别降低了1.46%和0.66%。 相似文献
10.
针对在模式分类问题中,数据往往存在不相关的或冗余的特征,从而影响分类的准确性的问题,提出一种融合Shapley值和粒子群优化算法的混合特征选择算法,以利用最少的特征获得最佳分类效果。在粒子群优化算法的局部搜索中引入博弈论的Shapley值,首先计算粒子(特征子集)中每个特征对分类效果的贡献值(Shapley值),然后逐步删除Shapley值最低的特征以优化特征子集,进而更新粒子,同时也增强了算法的全局搜索能力,最后将改进后的粒子群优化算法运用于特征选择,以支持向量机分类器的分类性能和选择的特征数目作为特征子集评价标准,对UCI机器学习数据集和基因表达数据集的17个具有不同特征数量的医疗数据集进行分类实验。实验结果表明所提算法能有效地删除数据集中55%以上不相关的或冗余的特征,尤其对于中大型数据集能删减80%以上,并且所选择的特征子集也具有较好的分类能力,分类准确率能提高2至23个百分点。 相似文献
11.
支持向量机(Support Vector Machine,SVM)对内部参数有着极高的依赖性,因此参数的好坏直接决定了SVM的分类效果,比如径向基核函数的参数。为了寻找出与分类问题相契合的参数,将样本数据投影到高维度特征空间,从而在特征空间中计算类内平均距离与类外中心距离之差,并将其作为参数评估的适应值;利用粒子群算法的全局寻优能力,在定义域内生成种群以代表不同的参数取值;利用粒子的随机游走来进行最优参数搜索,并将结果代入SVM进行样本训练。将所提算法与网格算法等进行了比较,结果表明所提算法的参数设定更加准确,分类准确率有显著提高,且算法复杂度并没有明显增加。 相似文献
12.
动态背包问题(DKP)是一类经典的动态优化问题,可以用来描述许多实际的问题。迄今为止,针对动态背包问题的研究主要集中在遗传算法上,而对粒子群优化算法的研究较少。在离散粒子群优化模型的基础上,引入环境变化的探测以及环境变化后的响应机制,提出一种求解动态背包问题的离散粒子群优化算法(DSDPSO)。将该算法和现有经典的自适应原对偶遗传算法(APDGA)在两个动态背包问题上进行了对比实验,结果表明,DSDPSO算法在环境变化后能迅速地找到最优解并稳定下来,更适合于求解动态背包问题。 相似文献
13.
Shutao Li Xixian Wu Mingkui Tan 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2008,12(11):1039-1048
Selecting high discriminative genes from gene expression data has become an important research. Not only can this improve
the performance of cancer classification, but it can also cut down the cost of medical diagnoses when a large number of noisy,
redundant genes are filtered. In this paper, a hybrid Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) method
is used for gene selection, and Support Vector Machine (SVM) is adopted as the classifier. The proposed approach is tested
on three benchmark gene expression datasets: Leukemia, Colon and breast cancer data. Experimental results show that the proposed
method can reduce the dimensionality of the dataset, and confirm the most informative gene subset and improve classification
accuracy. 相似文献
14.
针对多种车型可用的多校校车路径问题(SBRP),建立数学模型,并提出了一种迭代局部搜索(ILS)元启发算法进行求解。该算法引入并改进了带时间窗的装卸一体化问题(PDPTW)求解中的点对邻域算子,并使用可变邻域下降搜索(VND)完成局部提升。局部提升过程中,设计一种基于路径段的车型调整策略,尽可能地调整车型,降低成本,并允许接受一定偏差范围内的邻域解以保证搜索的多样性。对于局部提升得到的最好解,使用多点移动方法对其进行扰动,以避免算法过早陷入局部最优。在国际基准测试案例上分别测试多校混载和不混载模式下算法的性能,实验结果验证了设计算法的有效性。进一步使用提出的算法求解单车型多校SBRP问题,并与后启发算法、模拟退火算法和记录更新法等算法进行比较,实验结果表明该算法仍然能够获得较好的优化效果。 相似文献
15.
基于动态多种群粒子群支持向量机的短期负荷预测 总被引:2,自引:0,他引:2
针对标准粒子群优化(PSO)算法存在易陷入局部极值点的缺点,提出了一种基于物种概念的动态多种群粒子群优化算法(DMPSO).在DMPSO中引入了物种概念,在进化过程中动态确定物种,利用种群多样性信息动态调整物种半径,通过物种对解空间的不同区域进行搜索,最终确定出各极值点.将DMPSO算法和支持向量机(SVM)相结合,形成了解决电力系统短期负荷预测问题的新方法(DMPSO-SVM).在该方法中利用DMPSO算法来优化SVM中的参数,利用快速傅立叶变换(FFT)进行频谱分析并确定SVM的输入量.电力系统短期负荷预测的实际算例表明,与传统预测方法相比,该方法具有更高的预测精度和鲁棒性. 相似文献
16.
运输问题是一个应用非常广泛的问题,传统方法对于大规模的运输问题求解比较复杂,而一些基于随机搜索算法的方法对于其约束条件的处理又比较困难.基于运输问题约束条件的特殊性,设计了一种产生可行解的方法,将对约束条件的处理转化到了算法设计之中.在此基础上,又设计了基于遗传算法和粒子群优化算法的求解运输问题的GAPSO算法,为避开对非可行解的处理,该算法对迭代过程也进行了特殊设计,从而简化了运用随机搜索算法解决运输问题的过程.最后给出了三个实例验证,通过对验证结果分析和比较,说明该算法在时间复杂度和收敛性方面都具有其优良性,是行之有效的. 相似文献
17.
针对QoS组播路由问题,提出了一种改进的量子粒子群优化算法。为了更好地求解该问题,算法采用预处理机制。首先将图形网络拓扑转换为树形网络拓扑,在此基础上进行粒子的编解码,从而杜绝了坏粒子及环路的产生,减少了重复粒子;并利用量子粒子群算法进行粒子群遍历寻优,同时在每次粒子位置移动后,均进行粒子群体的交叉和选择操作,以提高粒子群个体的多样性,增强算法的全局寻优能力,加快算法的收敛速度。最后,将该算法与传统的粒子群优化算法进行编程对比。实验仿真结果表明:改进后的量子粒子群优化算法能获得比传统粒子群优化算法更优的解,同时具有更快的收敛速度及全局寻优能力。 相似文献
18.
校车路径规划中,允许站点乘车需求拆分通常能有效地降低校车服务成本。将该问题定义为需求可拆分校车路径问题(SDSBRP)进行求解。由于校车服务中要顾及学生最大乘车时间,且优化目标要兼顾所需校车数量和校车行驶距离,经典SDVRP算法难以直接应用于SDSBRP。因此分析了该问题的解特征,首次构建双目标SDSBRP数学模型,并首次设计针对该问题的元启发式求解算法。该算法首先构造初始可行解,然后在模拟退火算法框架下,引入站点需求拆分的邻域搜索算子进行迭代搜索,逐步改善解的质量。邻域搜索中,设计了多目标问题的邻域接受准则来引导邻域解的搜索方向,并引入破坏重建机制来增加解的多样性。使用已有的测试案例集和改造的测试案例进行算法测试,实验结果表明所提算法收敛性好,能够显著降低校车服务成本。 相似文献
19.
This paper presents a hybrid filter-wrapper feature subset selection algorithm based on particle swarm optimization (PSO) for support vector machine (SVM) classification. The filter model is based on the mutual information and is a composite measure of feature relevance and redundancy with respect to the feature subset selected. The wrapper model is a modified discrete PSO algorithm. This hybrid algorithm, called maximum relevance minimum redundancy PSO (mr2PSO), is novel in the sense that it uses the mutual information available from the filter model to weigh the bit selection probabilities in the discrete PSO. Hence, mr2PSO uniquely brings together the efficiency of filters and the greater accuracy of wrappers. The proposed algorithm is tested over several well-known benchmarking datasets. The performance of the proposed algorithm is also compared with a recent hybrid filter-wrapper algorithm based on a genetic algorithm and a wrapper algorithm based on PSO. The results show that the mr2PSO algorithm is competitive in terms of both classification accuracy and computational performance. 相似文献
20.
基于启发式遗传算法的QoS组播路由问题求解 总被引:63,自引:0,他引:63
研究了带宽、延时抖动和包丢失率约束以及费用最小的QoS组播路由问题,并提出一种启发式遗传算法。该算法有以下特点:(1)预处理机制;(2)树结构编码;(3)启发式交叉策略;(4)指导性变异过程,最后通过仿真实验证明该算法快速有效。 相似文献