共查询到20条相似文献,搜索用时 15 毫秒
1.
P.-Y. CHANG J.-M. YANG H. SEO H. T. HAHN 《Fatigue & Fracture of Engineering Materials & Structures》2007,30(12):1158-1171
The off‐axis fatigue cracking behaviour of notched fibre metal laminates under constant amplitude loading conditions was investigated experimentally and numerically. It was found that the off‐axis fatigue crack initiation life decreased as the off‐axis angles increased. This indicated that the off‐axis laminates raised the applied stress level in the aluminium (Al) layer and subsequently resulted in earlier cracking in the Al layer. The off‐axis fatigue crack initiation lives of notched fibre metal laminates were predicted using lamination theory and an energy‐based critical plane fatigue damage analysis from the literature. After a crack initiated in the Al layer, it was observed that the crack path angles of the off‐axis specimens were neither perpendicular to the fibre nor to the loading direction. A finite‐element model was established for predicting the crack path angles. 相似文献
2.
Crack closure in fibre metal laminates 总被引:1,自引:0,他引:1
H.M. PLOKKER R.C. ALDERLIESTEN R. BENEDICTUS 《Fatigue & Fracture of Engineering Materials & Structures》2007,30(7):608-620
GLARE is a fibre metal laminate (FML) built up of alternating layers of S2-glass/FM94 prepreg and aluminium 2024-T3. The excellent fatigue behaviour of GLARE can be described with a recently published analytical prediction model. This model is based on linear elastic fracture mechanics and the assumption that a similar stress state in the aluminium layers of GLARE and monolithic aluminium result in the same crack growth behaviour. It therefore describes the crack growth with an effective stress intensity factor (SIF) range at the crack tip in the aluminium layers, including the effect of internal residual stress as result of curing and the stiffness differences between the individual layers. In that model, an empirical relation is used to calculate the effective SIF range, which had been determined without sufficiently investigating the effect of crack closure. This paper presents the research performed on crack closure in GLARE. It is assumed that crack closure in FMLs is determined by the actual stress cycles in the metal layers and that it can be described with the available relations for monolithic aluminium published in the literature. Fatigue crack growth experiments have been performed on GLARE specimens in which crack growth rates and crack opening stresses have been recorded. The prediction model incorporating the crack closure relation for aluminium 2024-T3 obtained from the literature has been validated with the test results. It is concluded that crack growth in GLARE can be correlated with the effective SIF range at the crack tip in the aluminium layers, if it is determined with the crack closure relation for aluminium 2024-T3 based on actual stresses in the aluminium layers. 相似文献
3.
《Strain》2018,54(2)
Current trends in aircraft design are to increase the economic efficiency by integrating different features in multifunctional materials. One strategy is to embed resistance heater elements between glass‐fibre epoxy layers in (heated) fibre metal laminates and to use them as anti or de‐icing devices in leading edges of wings. Heated glass fibre reinforced aluminium (GLARE) is an example of such a multifunctional material where heating functionality was added to the (certified) structural feature of GLARE. As heated fibre metal laminates are an innovative and rather new material, the possible (local) effects of embedded heating on the stress–strain state have not yet been investigated. This research couples experimental characterisation of heated GLARE surface behaviour and numerical modelling analysis to investigate the surface and the through‐the‐thickness strain‐stress state and temperature distributions due to the embedded heating. For the experimental part, the surface strains and the temperatures of a developed specimen were measured in a slow heating regime (temperature increase from 22.7 to 39.4 °C within 120 s) using, respectively, a developed shearography instrument and thermocouples with an infrared camera. Then a numerical model of heated GLARE was developed and verified with experimental results. Further, the numerical model was used to predict strains, stresses, and temperatures during a temperature increase similar to that used for de‐icing in a real operation (temperature increase from −25 to 86.7 °C within 4.8 s). 相似文献
4.
P.‐Y. CHANG P.‐C. YEH J.‐M. YANG 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(11):989-1003
The crack growth behaviour of hybrid boron/glass/aluminium fibre metal laminates (FMLs) under constant‐amplitude fatigue loading was investigated. The hybrid FMLs consist of Al 2024‐T3 alloy as the metal layers and a mixture of boron fibres and glass fibres as the fibre layers. Two types of boron/glass/aluminium laminates were fabricated and tested. In the first type, the glass fibre/prepreg and the boron fibre/prepreg were used separately in the fibre layers, and in the second type, the boron fibres and the glass fibres were uniformly mingled together to form a hybrid boron fibre/glass fibre prepreg. An analytical model was also proposed to predict the fatigue crack growth behaviour of hybrid boron/glass/aluminium FMLs. The effective stress intensity factor at a crack tip was formulated as a function of the remote stress intensity factor, crack opening stress intensity factor, and the bridging stress intensity factor. The bridging stress acting on the delamination boundary along the crack length was also calculated based on the crack opening relations. Then, the empirical Paris‐type fatigue crack growth law was used for predicting the crack growth rates. A good correlation between the predicted and experimental crack growth rates has been obtained. 相似文献
5.
P.‐Y. CHANG P.‐C. YEH J.‐M. YANG 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(2):93-107
The fatigue crack growth behaviour of hybrid S2‐glass reinforced aluminium laminates (Glare) with multiple open holes was investigated experimentally and analytically. It was observed that the presence of multiple‐site fatigue damage would increase crack growth rates in the metal layers as two propagating cracks converged. An analytical crack growth model was established for predicting crack growth rates based on empirical Paris equation. The effective stress intensity factor at crack tips is a function of mode I far‐field stress intensity factor, crack opening stress intensity factor and effective non‐dimensional stress intensity factor that incorporated the crack‐bridging effect in fibre metal laminates. The predicted results under different applied stress can capture the trend of averaged crack growth rates in experiments, although deviation exists in the predictions. 相似文献
6.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results. 相似文献
7.
The present study focuses on a developed crack density-based model for evaluating the material properties of an orthotropic composite ply containing a specified matrix-cracking density. Furthermore, more complementary details of this model, including a closed form solution for evaluating the stress fields as well as stiffness degradation of a damaged ply, will be presented. The derived relations will be applied for evaluating the master plot curve, which is applicable for obtaining the finite fracture toughness (Gmc) of laminated composites. The obtained results will be compared with the available experimental results. 相似文献
8.
Although the crack-tip-opening angle (CTOA) has been shown to be well suited for modelling stable crack growth in monolithic sheet aluminium alloys, its applicability for fibre metal laminates has not been fully analyzed yet. Fracture test were performed on M(T) panels made of Glare 2-3/2-0.4, Glare 3-3/2-0.4 and laminated 2024-T3 3/2-0.4. Different fatigue pre-crack lengths were created to study the effect of bridging fibres on the CTOA measured on the external layer. The effect of bridging fibres resulted in small deviations of the CTOA vs. crack extension curve with respect to the reference panel made of metal laminate. The CTOA criterion could be successfully used for predicting the residual strength in fibre metal laminates. 相似文献
9.
Ren Alderiesten 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(11):2414-2421
With the introduction of fibre metal laminates (FMLs) as a (fatigue) damage tolerant material concept in aeronautics, an interesting field emerged where fatigue damage interaction plays a dominant role. The hybrid concept effectively demands evaluating fatigue damage growth based on fracture phenomena typical for both metals and fibre‐reinforced composites that continuously interact with each other. This paper explains current understanding of the fatigue fracture phenomena in FMLs, and it demonstrates how this interaction limits the criticality of both the metallic and composite fracture phenomena. In addition, it explains how the laminated hybrid configuration can be further exploited scientifically to unravel the physics of the individual fatigue fracture phenomena. 相似文献
10.
针对Z-pin增强复合材料层合板, 开展了断裂韧性的试验研究。研究选取了3种Z-pin直径(0.28、 0.52、 0.80mm)且每种直径下分别以3种分布形式(5×5、 8×8、 10×10)排布Z---pin的增强方式, 为了确定比较基准, 试验中同时测试了不含Z-pin的复合材料层合板试样。通过Z-pin拔出试验测试了3种直径Z-pin从基体拔出过程中的载荷位移关系。利用双悬臂梁试验和端部开口弯曲试验分别测试了不含Z-pin和含Z-pin试样的Ⅰ型断裂应变能释放率GⅠC、 Ⅱ型断裂应变能释放率GⅡC。试验结果表明:? 与不含Z-pin的结构相比, Z-pin增强试样的Ⅰ型断裂应变能释放率GⅠC增大了83%~1110%, Ⅱ型断裂应变能释放率GⅡC增大了23%~438%; 在相同Z-pin体积含量下, 与增大Z-pin直径相比, 增大Z-pin分布密度能更有效地提高复合材料层合板的断裂韧性。 相似文献
11.
Kai Jin Kai Chen Xinyi Luo Jie Tao 《Fatigue & Fracture of Engineering Materials & Structures》2020,43(6):1115-1125
Ti/CFRP (titanium/carbon fibre reinforced polymer) fibre metal laminates (FMLs) are composed of titanium sheets and carbon fibres reinforced PMR (polymerization of monomeric reactants) type polyimide resin. Due to the outstanding heat resistance of the material, it can be used in hypersonic aircraft applications. Fatigue cracks in the metal layer and delamination at metal/fibre interface may occur in long‐term high‐temperature use processes. However, the behaviour of the fatigue failure at high temperatures has not been investigated. A temperature‐dependent equation has not been presented to predict the crack growth behaviour at high temperatures. In this study, to investigate the crack propagation and delamination behaviours, fatigue crack growth rate tests using tension‐tension loads at 25°C, 80°C, 120°C, and 150°C were conducted in accordance with ASTM E647‐15e1. The results indicated that the variation in fatigue crack growth rate could be described by a modified temperature‐dependent Paris equation. Interfacial strength and tensile strength may influence fatigue failure at high temperatures. Hence, these strength values were also obtained to analyse the mechanism of fatigue behaviour. The delamination area increased exponentially with temperature due to the weakening of the Ti/CFRP interface, and delamination was invariably generated on the microcracks of the titanium layers. 相似文献
12.
13.
H. M. PLOKKER S. U. KHAN R. C. ALDERLIESTEN R. BENEDICTUS 《Fatigue & Fracture of Engineering Materials & Structures》2009,32(3):233-248
To extend the predictive capability of existing crack growth models for fibre metal laminates under constant amplitude fatigue loading to variable-amplitude loading, further research on variable-amplitude fatigue mechanisms in fibre metal laminates is necessary. In response to this need, an experimental study into the effects of multiple overloads, underloads and various block-loading sequences on crack growth in the fibre metal laminate Glare was investigated. Crack growth retardation effects were observed in the tests; however, the magnitude of these effects was lower than seen in monolithic aluminium because of fibre bridging. As a result, predictions of the observed behaviour were attempted using an existing constant-amplitude fatigue crack growth model for Glare in combination with a linear damage accumulation law. 相似文献
14.
15.
The application of peel tests for the measurement of adhesive fracture toughness of metal-polymer laminates is reviewed and the merits of a mandrel peel method are highlighted. The mandrel method enables a direct experimental determination of both adhesive fracture toughness (GA) and the plastic bending energy (GP) during peel, whilst other approaches require a complex calculation for GP. In this method, the peel arm is bent around a circular roller in order to develop a peel crack and an alignment load attempts to ensure that the peel arm conforms to the roller.The conditions for peel arm conformance are thoroughly investigated and the theoretical basis for conformation are established. Experimental investigations involve the study of the roller size (radii in the range 5-20 mm are used), the peel arm thickness (varied from 0.635 to 2.0 mm) and the magnitude of the alignment load. In addition, the plane of fracture is studied since fractures can vary from cohesive to interfacial and this has a profound influence on the value of GA and on interpretation of results.A test protocol for conducting mandrel peel is developed such that the roller size for peel arm conformance can be established from preliminary fixed arm peel tests.The work is conducted on two epoxy/aluminium alloy laminates suitable for aerospace applications. Comparative results of adhesive fracture toughness from mandrel peel and multi-angle fixed arm peel are made with cohesive fracture toughness from a tapered double cantilever beam test. 相似文献
16.
The paper presented deals with the fracture behaviour of ceramic laminates. The residual stresses in individual layers of Al2O3/5vol.%t-ZrO2 (ATZ) and Al2O3/30vol.%m-ZrO2 (AMZ) are determined. Assumptions concerning linear elastic fracture mechanics and small scale yielding are considered. In this frame the procedure based on a generalization of Sih’s strain energy density factor to the case of a crack touching the interfaces between two dissimilar materials is used for determination of effective values of the stress intensity factor on material interfaces. An important increase of fracture toughness at the AMZ/ATZ interface was predicted in comparison to the fracture toughness of individual material components. Predicted values were compared with data available in the literature and mutual good agreement was found. The procedure suggested can be used for estimation of resistance to crack propagation through multilayered structures and its design. The procedure can contribute to enhancing the reliability and safety of structural ceramics or, more generally, of layered composites with strong interfaces. 相似文献
17.
Katarzyna Konopka Micha
Maj Krzysztof J. Kurzyd
owski 《Materials Characterization》2003,51(5):335-340
The purpose of this study was to describe the influence of metal particles on the fracture toughness of ceramic matrix composites. Here, alumina matrix composites with molybdenum particles have been investigated. The results presented show that the change of fracture toughness of a ceramic–metal composite can be controlled by the volume fraction of metallic phase and size of metal particles.
The model proposed in this paper describes the change of crack length and as a consequence, the change of KIC value. The results of modelling calculations have been compared with experimentally measured KIC values. This model is useful for simulation of crack length changes in the composites and to design a material with an optimum fracture toughness. 相似文献
18.
E.M. Castrodeza Author Vitae F.L. Bastian Author Vitae Author Vitae 《Engineering Fracture Mechanics》2005,72(14):2268-2279
Fiber-metal laminates (FMLs) are structural composites developed for aeronautical applications. The application of FMLs to structures demands a deep knowledge of a wide set of properties, including fracture toughness. The objective of this work was to evaluate the effect of crack orientation on the fracture toughness (critical J-integral and CTOD δ5) of unidirectional FMLs. Small C(T) and SE(B) specimens with notches parallel and perpendicular to the fibers direction were tested. A study of the relation and equivalence between JC and δ5C, which heavily depend on the yield strength and on the stress state, was performed motivated by apparently contradictory experimental results. These results can be explained by the direction-dependent yielding properties of unidirectional FMLs. The best overall equivalence between JC and δ5C was obtained considering plane stress state and using the effective yield strength, both for unidirectional FMLs notched parallel and perpendicular to the fibers direction. 相似文献
19.
E. M. CASTRODEZA F. L. BASTIAN J. E. PEREZ IPIÑA 《Fatigue & Fracture of Engineering Materials & Structures》2004,27(10):923-929
Fibre‐metal laminates (FMLs) are structural composites designed with the aim of producing very low fatigue crack‐propagation rate, damage‐tolerant and high‐strength materials, if compared to aeronautical Al alloys. Their application in aeronautical structures demands a deep knowledge of a wide set of mechanical properties and technological values, including both fracture toughness and residual strength. The residual strength of FMLs have been traditionally determined by using wide centre‐cracked tension panels M(T). The use of this geometry requires large quantities of material and heavy laboratory facilities. In this work, fracture toughness ( JC) of some unidirectional FMLs laminates was measured using a recently proposed methodology for critical fracture toughness evaluation on compact tension C(T) and single‐edge bend SE(B) specimens. Additionally, residual strength values of wider M(T) specimens with different widths (W from 150 to 200 mm) and several crack to width ratios (2a/W) were experimentally obtained. Some experimental residual strength values of M(T) specimens (W from 150 to 400 mm and different 2a/W ratios) of Arall were also obtained from the bibliography. Based on JC results from C(T) and SE(B) specimens, and either using or not using crack‐tip plasticity corrections, the residual strengths of the M(T) specimens were predicted and compared to the experimental ones. The results showed good agreement, especially when crack‐tip plasticity corrections were applied. 相似文献
20.
冲击载荷下CFRP及GFRP层板断裂韧性的研究 总被引:1,自引:1,他引:1
利用Hopkinson杆加载装置, 对带有单边切口的炭纤维增强复合材料(CFRP)及玻璃纤维增强复合材料(GFRP)层板试件进行冲击拉伸加载实验。根据一维应力波理论求得作用于试件上的载荷P(t)和试件加载点的位移δ(t)。 根据试样中应力随时间的变化历史σ(t), 并基于断裂韧性测试原理, 建立了动态应力强度因子KⅠ (t)响应曲线。利用柔度变化率方法确定起裂时间, 分别得到在两种加载速率下CFRP、 GFRP层板的动态断裂韧性。结果表明, 随着加载速率的提高, 这两种复合材料的断裂韧性降低。 相似文献