共查询到10条相似文献,搜索用时 46 毫秒
1.
CT图像肺结节大小、形状和纹理的多样性,导致肺结节的良恶性诊断十分困难。在三维卷积神经网络的基础上,提出了一种基于多深度残差注意力机制的网络(MDRA-net),用于良恶性肺结节分类。MDRA-net通过在残差分支上使用特征融合及迭代分层融合的方法,提升了网络对结节位置特征及全局特征的感知能力;此外,结合注意力机制,引入projection and excitation模块,利用空间和通道信息进行校准,进一步提升了网络提取特征的能力。在LUNA16数据集上的实验结果表明,MDRA-net分类模型的肺结节检测准确率达96.52%,灵敏度和特异性分别为93.01%和97.77%,较现有的基于深度学习的肺结节良恶性分类模型有较大提升。 相似文献
2.
3.
现有肺结节良恶性计算机辅助诊断的依据通常为肺部CT图像的底层特征,而临床医生的诊断依据为高级语义特征.为克服这种图像底层特征和高级语义特征之间的不一致性,提出一种基于语义属性的肺结节良恶性判别方法.首先,利用阈值概率图方法提取肺结节图像;其次,一方面提取肺结节图像的形状、灰度、纹理、大小和位置等底层特征,组成样本特征集.另一方面,根据专家对肺结节属性的标注,提取结节属性集;然后,根据特征集和属性集建立属性预测模型,实现两者之间的映射;最后,利用预测的属性进行肺结节的良恶性分类.LIDC数据库上的实验结果表明所提方法具有较高的分类精度和AUC值. 相似文献
4.
临床上肺结节的评估往往需要综合临床信息和影像特征进行判断,不同类型的结节的肺癌概率和判定标准也不尽相同,文章基于LIDC-IDRI数据集和额外的人工标注,提出了一种肺结节多分类的方法,利用多分类卷积神经网络,对预处理之后的CT数据进行肺结节的四分类,得到的分类结果更注重对临床医生的可理解的特征分类进行判断。实验表明,该方法取得了良好的效果,四种分类的准确性都在92%以上。该方法可以给医生提供一个可靠的结节分类效果,便于后续的肺结节评估。 相似文献
5.
肺结节早期检测可以提高病人的生存率,自动检测算法可以有效辅助医生进行诊断.为了提高肺结节检测精确度、降低漏诊率,提出了基于循环残差注意力门机制的U-Net(Recurrent Residual Attention Gate U-Net,R2AGU-Net)肺结节检测模型.首先在原始的U-Net基础上改进,添加循环残差卷积模块并融合注意力门机制,在增强特征提取性能的同时将注意力放在目标结节区域,通过抑制无关的特征响应获得较高的检测精度;其次改进损失函数解决肺结节图像数据不均衡问题,获得较高的检测敏感度;最后通过三维卷积神经网络(3D CNN)分类候选结节,降低检测的假阳性.在两个数据集上进行实验验证,结果表明本文提出的算法提升了检测速度和敏感度,取得了比现有算法更好的性能,具有较好的泛化能力。 相似文献
6.
7.
肺结节精确分类是提前诊断肺癌的基础。若能在早期检测恶性肺结节并干预处理,对患者预后有很大影响。深度学习能够自动提取肺结节的特征,完成肺结节的良恶性及恶性等级分类。基于此,介绍LIDC-IDRI及LUNA16这两个常用的肺结节数据集,阐述卷积神经网络(Convolutional Neural Networks,CNN)、视觉几何组(Visual Geometry Group,VGG)、迁移学习肺结节良恶性分类中的应用及其实验对比,总结U-Net、生成对抗网络(Generative Adversarial Networks,GAN)应用于恶性肺结节等级分类及该网络的相关研究现状,最后综合分析深度学习在该领域的应用情况。 相似文献
8.
多标签文本分类的结果很大程度上受到标签相关性的影响.为了更加细致地处理标签相关性问题,提出一种融合注意力机制的多标签文本分类方法.首先,将文本和标签预处理后,对标签输入采用两种不同的嵌入方式提取特征;其次,运用注意力机制处理信息,针对文本和标签信息,自注意力机制进行特征处理,标签注意力机制和交互注意力机制进行依赖关系处理,进而得到两种不同状态下的表示方式;最后,通过两次融合,充分表示文本标签信息,得到较好的标签分类结果.实验结果显示,较之于基线方法,在精度和归一化折损累计增益上,该方法数据总体有所提高.由此,该方法可以有效地融合文本和标签信息,缓解标签相关性问题,有利于提升多标签文本分类任务性能. 相似文献
9.
为识别表格中单元格的类别,提出了多特征融合的表格单元格分类模型.首先分别基于词向量和字向量从不同粒度对单元格文本进行表示,并通过拼接的方式实现字词向量的融合,然后通过TextCNN进行单个单元格文本特征提取;其次,构建表格空间坐标系,获取每个单元格的空间特征,并在此基础上融合单元格的文本特征与空间位置特征,采用自注意力... 相似文献
10.
丰晓钰;王明泉;李磊磊;朱焕宇;李文波;谢绍鹏 《现代电子技术》2024,(5):60-64
为了能够早些发现肺结节患者,进行有效的预防和治疗,便能够大大提升肺癌患者的生存率,针对医学CT图像肺结节分割时存在异质性,会导致分割精度降低,提出一种基于高级语义及注意力的肺结节分割模型。该模型使用VGG16作为主干网络搭建U-net模型;采用金字塔池化模块(PPM),在尽可能保留原信息的情况下,将深层信息进行加强提取,得到更加丰富的高级语义信息;同时利用CA注意力机制强化重要的特征,实现空间和通道方向上的信息整合;使用Focal Loss和Dice Loss函数解决肺结节分割中前背景不均衡和难区分的问题。实验结果显示,所提出的方法在IoU、F1分数指标上较U-net分割算法分别提高了1.33%、0.95%,有效地提升了分割精度,解决了与其他组织对比度低的问题。 相似文献