共查询到19条相似文献,搜索用时 62 毫秒
1.
CT图像肺结节大小、形状和纹理的多样性,导致肺结节的良恶性诊断十分困难。在三维卷积神经网络的基础上,提出了一种基于多深度残差注意力机制的网络(MDRA-net),用于良恶性肺结节分类。MDRA-net通过在残差分支上使用特征融合及迭代分层融合的方法,提升了网络对结节位置特征及全局特征的感知能力;此外,结合注意力机制,引入projection and excitation模块,利用空间和通道信息进行校准,进一步提升了网络提取特征的能力。在LUNA16数据集上的实验结果表明,MDRA-net分类模型的肺结节检测准确率达96.52%,灵敏度和特异性分别为93.01%和97.77%,较现有的基于深度学习的肺结节良恶性分类模型有较大提升。 相似文献
2.
3.
现有肺结节良恶性计算机辅助诊断的依据通常为肺部CT图像的底层特征,而临床医生的诊断依据为高级语义特征.为克服这种图像底层特征和高级语义特征之间的不一致性,提出一种基于语义属性的肺结节良恶性判别方法.首先,利用阈值概率图方法提取肺结节图像;其次,一方面提取肺结节图像的形状、灰度、纹理、大小和位置等底层特征,组成样本特征集.另一方面,根据专家对肺结节属性的标注,提取结节属性集;然后,根据特征集和属性集建立属性预测模型,实现两者之间的映射;最后,利用预测的属性进行肺结节的良恶性分类.LIDC数据库上的实验结果表明所提方法具有较高的分类精度和AUC值. 相似文献
4.
临床上肺结节的评估往往需要综合临床信息和影像特征进行判断,不同类型的结节的肺癌概率和判定标准也不尽相同,文章基于LIDC-IDRI数据集和额外的人工标注,提出了一种肺结节多分类的方法,利用多分类卷积神经网络,对预处理之后的CT数据进行肺结节的四分类,得到的分类结果更注重对临床医生的可理解的特征分类进行判断。实验表明,该方法取得了良好的效果,四种分类的准确性都在92%以上。该方法可以给医生提供一个可靠的结节分类效果,便于后续的肺结节评估。 相似文献
5.
6.
肺结节精确分类是提前诊断肺癌的基础。若能在早期检测恶性肺结节并干预处理,对患者预后有很大影响。深度学习能够自动提取肺结节的特征,完成肺结节的良恶性及恶性等级分类。基于此,介绍LIDC-IDRI及LUNA16这两个常用的肺结节数据集,阐述卷积神经网络(Convolutional Neural Networks,CNN)、视觉几何组(Visual Geometry Group,VGG)、迁移学习肺结节良恶性分类中的应用及其实验对比,总结U-Net、生成对抗网络(Generative Adversarial Networks,GAN)应用于恶性肺结节等级分类及该网络的相关研究现状,最后综合分析深度学习在该领域的应用情况。 相似文献
7.
多标签文本分类的结果很大程度上受到标签相关性的影响.为了更加细致地处理标签相关性问题,提出一种融合注意力机制的多标签文本分类方法.首先,将文本和标签预处理后,对标签输入采用两种不同的嵌入方式提取特征;其次,运用注意力机制处理信息,针对文本和标签信息,自注意力机制进行特征处理,标签注意力机制和交互注意力机制进行依赖关系处理,进而得到两种不同状态下的表示方式;最后,通过两次融合,充分表示文本标签信息,得到较好的标签分类结果.实验结果显示,较之于基线方法,在精度和归一化折损累计增益上,该方法数据总体有所提高.由此,该方法可以有效地融合文本和标签信息,缓解标签相关性问题,有利于提升多标签文本分类任务性能. 相似文献
8.
为识别表格中单元格的类别,提出了多特征融合的表格单元格分类模型.首先分别基于词向量和字向量从不同粒度对单元格文本进行表示,并通过拼接的方式实现字词向量的融合,然后通过TextCNN进行单个单元格文本特征提取;其次,构建表格空间坐标系,获取每个单元格的空间特征,并在此基础上融合单元格的文本特征与空间位置特征,采用自注意力... 相似文献
9.
10.
基于视图的3维模型分类方法与深度学习融合能有效提升模型分类的准确率。但目前的方法将相同类别的3维模型所有视点上的视图归为一类,忽略了不同视点上的视图差异,导致分类器很难学习到一个合理的分类面。为解决这一问题,该文提出一个基于深度神经网络的3维模型分类方法。该方法在3维模型的周围均匀设置多个视点组,为每个视点组训练1个视图分类器,充分挖掘不同视点组下的3维模型深度信息。这些分类器共享1个特征提取网络,但却有各自的分类网络。为了使提取的视图特征具有区分性,在特征提取网络中加入注意力机制;为了对非本视点组的视图建模,在分类网络中增加了附加类。在分类阶段首先提出一个视图选择策略,从大量视图中选择少量视图用于分类,以提高分类效率。然后提出一个分类策略通过分类视图实现可靠的3维模型分类。在ModelNet10和ModelNet40上的实验结果表明,该方法在仅用3张视图的情况下分类准确率高达93.6%和91.0%。 相似文献
11.
深度换脸技术的出现严重威胁了公众的隐私安全。为了解决现有深度换脸检测方法的局限性,基于多任务学习策略提出了一种双分支检测网络,实现在检测视频伪造的同时逐帧检测。该网络引入了注意力机制和时序学习模块,通过学习局部空间信息和时序信息提升检测性能。该方法在公开数据集Celeb-DF和FaceForensics++上获得了比当前先进换脸检测方法更高的准确率和ROC(Receiver Operating Characteristic)曲线下面积(Area under ROC Curve,AUC),面对不同光照、人脸朝向、视频质量时表现出了良好的鲁棒性。 相似文献
12.
针对传统编解码结构的医学图像分割网络存在特征信息利用率低、泛化能力不足等问题,该文提出了一种结合编解码模式的多尺度语义感知注意力网络(multi-scale semantic perceptual attention network,MSPA-Net) 。首先,该网络在解码路径加入双路径多信息域注意力模块(dual-channel multi-information domain attention module,DMDA) ,提高特征信息的提取能力;其次,网络在级联处加入空洞卷积模块(dense atrous convolution module,DAC) ,扩大卷积感受野;最后,借鉴特征融合思想,设计了可调节多尺度特征融合模块 (adjustable multi-scale feature fusion,AMFF) 和双路自学习循环连接模块(dual self-learning recycle connection module,DCM) ,提升网络的泛化性和鲁棒性。为验证网络的有效性,在CVC-ClinicDB、ETIS-LaribPolypDB、COVID-19 CHEST X-RAY、Kaggle_3m、ISIC2017和Fluorescent Neuronal Cells等数据 集上进行验证,实验结果表明,相似系数分别达到了94.96%、92.40%、99.02%、90.55%、92.32%和75.32%。因此,新的分割网络展现了良好的泛化能力,总体性能优于现有网络,能够较好实现通用医学图像的有效分割。 相似文献
13.
已有的实时定位与地图构建(simultaneous localization and mapping,SLAM)方案采用的特征点匹配方法普遍会受视角变化的影响使得特征点的匹配比较困 难,进而 干扰到特征点匹配的精度,最终影响到三维(three-dimensional, 3D) 点云地图构建以及相机运动位姿估计的精度。为 此,本文提出 一种基于注意力机制的特征点匹配网络的SLAM方法。相比于现有的SLA M方法,本 文将SLAM中视觉里程计模块的特征点匹配的方法替换成了一个全新的、基于注意力机制的 特征点匹配网 络的特征点匹配方法,并和传统的特征点提取方法做了一个全新的特征点提取与匹配的组合 ,形成了一个 新的视觉里程计,进而形成了一个新的SLAM方法。首先,通过传统的特征点提取算法进行 特征点的提取, 对提取的特征点及描述子向量进行编码,通过图注意力神经网络进行学习得到匹配描述子, 根据匹配描述 子创建得分矩阵,采用最优传输算法求解最优得分矩阵,计算得到最优匹配点对,到这里就 完成了特征点 提取与匹配的整个过程;基于匹配点对完成相机的定位、建图和回环检测。本文采用KITT I公开数据集 进行实验,实验结果表明采用基于注意力机制特征点匹配网络的SLAM方案,在视角变化不 稳定的情况下,相机运动轨迹误差和相机位姿估计误差的精度明显有所提升。 相似文献
14.
15.
通信信号调制识别作为管理、监测电磁频谱的重要手段,具有重要的研究价值和应用前景。本文利用调制信号的频域信息,提出一种基于复数神经网络的信号调制识别方法。首先将I、Q两路信号组合成复信号,经过快速傅里叶变换(FFT)后把得到的实部和虚部组合起来作为输入网络的数据集。其次,设计了一种复数神经网络结构,并引入了注意力机制对网络结构进行改良。仿真结果表明,本文提出的方法可以有效识别9种调制方式,在信噪比为6 dB时,平均正确识别率达到96.33%。 相似文献
16.
人耳特征具有良好的唯一性与稳定性等特点,近年来被广泛应用于身份识别领域。针对人耳采集易受头发、耳饰等物品遮挡问题,本文提出了一种基于ERNet的人耳识别方法。该方法在IResNet网络的基础上,引入改进的SE模块,通过融合最大池化与均值池化的统计特性,增强身份相关特征的表示,抑制非相关特征的影响,以此解决在非受控环境下由于遮挡原因造成的识别困难问题。大量实验结果表明,相比较于原网络,改进后的方法识别性能提高较为明显。在同等遮挡条件下,本文所提出的模型具有较好的鲁棒性能。 相似文献
17.
病理细胞核的精准分割是病理学诊断的基础,然而当前算法针对带有核分裂象的乳腺癌细胞核自动分割效果差强人意。本文针对当前细胞核分割算法展开分析研究,并提出了一种基于注意力机制和残差结构相结合的U型网络(U_net)用于解决因核分裂象和非核分裂象细胞形态特征十分接近造成细胞核分割精度不足的问题。通过实验表明本文提出算法的平均像素准确率(mean pixel accuracy,MPA)和Mean_dice指标系数分别为0.74和0.82。与原有算法相比,训练指标分别提升了11%和9%,证明本文算法的可行性。 相似文献
18.
针对经典卷积神经网络(convolutional neural network,CNN) 的高光谱影像分类方法存在关键细节特征表现不足、训练需要大量样本等问题,提出一种基于多尺度特征与双注意力机制的高光谱影像分类方法。首先,利用三维卷积提取影像的空谱特征,并采用转置卷积获得特征的细节信息;然后,通过不同尺寸的卷积核运算提取多尺度特征并实现不同感受野下多尺度特征的融合;最后,设计双注意力机制抑制混淆的区域特征,同时突出区分性特征。在两幅高光谱影像上进行的实验结果表明:分别在每类地物中 随机选取10%和0.5%的样本作为训练样本,提出模型的总体分类精度分别提高到99.44%和98.86%;对比一些主流深度学习分类模型,提出模型能够关注于对分类任务贡献最大的关键特征,可以获取更高的分类精度。 相似文献
19.
Image steganalysis based on convolutional neural networks(CNN) has attracted great attention. However, existing networks lack attention to regional features with complex texture, which makes the ability of discrimination learning miss in network. In this paper, we described a new CNN designed to focus on useful features and improve detection accuracy for spatial-domain steganalysis. The proposed model consists of three modules: noise extraction module, noise analysis module and classification module. A channel attention mechanism is used in the noise extraction module and analysis module, which is realized by embedding the SE(Squeeze-and-Excitation) module into the residual block. Then, we use convolutional pooling instead of average pooling to aggregate features. The experimental results show that detection accuracy of the proposed model is significantly better than those of the existing models such as SRNet, Zhu-Net and GBRAS-Net. Compared with these models, our model has better generalization ability, which is critical for practical application. 相似文献