共查询到9条相似文献,搜索用时 4 毫秒
1.
2.
Actuator and sensor fault detection and isolation for nonlinear systems subject to uncertainty 下载免费PDF全文
This work addresses the problem of simultaneous actuator and sensor fault detection and isolation (FDI) for control affine nonlinear uncertain systems in the absence of measurement noise. The FDI is achieved by using a bank of filters, which utilize a subset of the measurements along with prescribed values of the control actuators to estimate states and compute expected process behavior. Residuals are next defined as the difference between the observed and expected behavior. Detectability conditions are developed, which, upon satisfaction, ensure that each residual remains sensitive to a subset of fault scenarios in the presence of uncertainty. To this end, first the ability of observers in providing bounded estimation error for a generalized class of nonlinear uncertain systems is rigorously established. These bounds allow determining thresholds that account for the impact of uncertainty on each residual. Finally, the ability of the proposed framework to achieve FDI by ensuring a unique residual breaching pattern for each fault scenario is established. The efficacy of the FDI framework subject to uncertainty and measurement noise is illustrated using a chemical reactor example. 相似文献
3.
The objective of this paper is to develop performance‐based fault detection (FD) and fault‐tolerant control (FTC) schemes for a class of nonlinear systems. To this end, the representation forms of nonlinear systems with faults and the controller parameterization forms are studied first with the aid of the nonlinear factorization technique. Then, based on the stable kernel representation and the stable image representation of the faulty nonlinear system, the stability performance of the closed‐loop system is addressed, respectively. The so‐called fault‐tolerant margin is defined to evaluate the system fault‐tolerant ability. On this basis, two performance‐based FD schemes are developed aiming at detecting the system performance degradation caused by system faults. Furthermore, to recover the system stability performance, two performance‐based FTC strategies are proposed based on the information provided by the FD unit. In the end, a numerical example and a case study on the three‐tank system are given to demonstrate the proposed results. 相似文献
4.
在针对将核主元分析(kernel principal components analysis, KPCA)与基于高斯分布的控制限(control limits,CLS)相结合会降低其性能的问题,提出了一种基于核主元分析与核密度估计(kernel principal components analysiskernel density estimation, KPCA-KDE)相结合的非线性过程故障监测与识别方法.该方法采用核密度估计(kernel density estimation, KDE)技术来估计基于KPCA的非线性过程监控的CLS.通过研究KPCA和KPCA-KDE所有20个故障的检出率发现,与相应的基于高斯分布的方法进行比较, KDE具有较高的故障检出率;此外,基于KDE的检测延迟等于或低于其他方法.通过改变带宽和保留的主元数量进行故障检测, KPCA记录的FAR值较高,相反, KPCA-KDE方法仍然没有记录任何假报警.在田纳西伊斯曼过程(Tennessee Eastman, TE)上的应用表明,KPCA-KDE比基于高斯假设的CLS的KPCA在灵敏度和检测时间上都具有更好... 相似文献
5.
6.
主元分析(PCA)是一种能够对过程生产进行监测和质量控制的有效方法,在保证数据信息丢失最少的情况下,大大降低了原始数据空间的维数。为了更好地进行故障检测与诊断,介绍了基于PCA多变量统计的故障检测与诊断,给出了广泛应用在多变量统计过程上的T2和Q(或SPE)统计量。利用PCA分析建模可以消除变量间的非线性关联,降低噪声影响。用田纳西-伊斯曼过程TEP(Tennessee-Eastman Process)平台产生仿真数据,并利用Matlab软件建立故障检测与诊断模型。通过T2和Q(或SPE)统计量与其阈值的判断,进行对系统的故障检测与诊断。实验表明,基于PCA的故障诊断方法能够对过程的非正常变化做出反应,也能较正确地找出发生故障的原因以及相应环节。 相似文献
7.
针对复杂化工过程具有的非线性、非高斯性和动态特征,提出了基于核独立成分分析(KICA)的模式匹配方法,用于动态过程监控和诊断。首先,利用滑动窗建立基准集与测试集的KICA模型,提取各自的核独立元:其次,融合余弦函数绝对值度量和距离度量,提出新的不相似度监控指标,识别训练与测试操作期间的相似模式,进行故障检测:最后,基于两类数据的核子空间之间的差异子空间,获得每个过程变量方向与该差异子空间之间的互信息,并定义新的非线性非高斯贡献度指标,进行故障诊断。基于污水处理过程的仿真结果表明,与主成分分析不相似度因子的方法、标准的独立成分分析(ICA)统计指标方法及标准的ICA T~2/SPE指标融合的贡献度方法相比,本文提出的方法具有更好的检测能力与故障诊断效果。 相似文献
8.
带钢热连轧过程控制是钢铁制造过程极其复杂的过程,近年来随着市场对带钢产品质量要求的日益提高,提高热连轧带钢质量具有广泛的经济和社会效益。为了确保热连轧过程安全运行,同时提高产品质量,有必要对热连轧过程的异常状况或故障进行检测、诊断和消除。以多元统计过程监控技术(MSPM)为理论指导,以主元分析(PCA)和偏最小二乘方法(PLS)为依托,研究和分析了PCA和PLS以及二者与核函数结合构成的核主元分析方法(KP-CA)和核偏最小二乘方法(KPLS)在热连轧机质量相关的故障分析与检测,通过现场数据及实验验证,在厚度质量相关的故障检测与诊断中取得较好的效果。 相似文献
9.
The existing multiple model-based estimation algorithms for Fault Detection and Diagnosis (FDD) require the design of a model set, which contains a number of models matching different fault scenarios. To cope with partial faults or simultaneous faults, the model set can be even larger. A large model set makes the computational load intensive and can lead to performance deterioration of the algorithms. In this paper, a novel Double-Model Adaptive Estimation (DMAE) approach for output FDD is proposed, which reduces the number of models to only two, even for the FDD of partial and simultaneous output faults. Two Selective-Reinitialization (SR) algorithms are proposed which can both guarantee the FDD performance of the DMAE. The performance is tested using a simulated aircraft model with the objective of Air Data Sensors (ADS) FDD. Another contribution is that the ADS FDD using real flight data is addressed. Issues related to the FDD using real flight test data are identified. The proposed approaches are validated using real flight data of the Cessna Citation II aircraft, which verified their effectiveness in practice. 相似文献