首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domain switching is the cause of significant non‐linearity in the response of piezoelectric materials to mechanical and electrical effects. In this paper, the response of piezoelectric solids is formulated by coupling thermal, electrical, and mechanical effects. The constitutive equations are non‐linear. Moreover, due to the domain switching phenomenon, the resulting governing equations become highly non‐linear. The corresponding non‐linear finite element equations are derived and solved by using an incremental technique. The developed formulation is first verified against a number of benchmark problems for which a closed‐form solution exists. Next, a cantilever beam made of PZT‐4 is studied to evaluate the effect of domain switching on the overall force–displacement response of the beam. A number of interesting observations are made with respect to the extent of non‐linearity and its progressive spread as the load on the beam increases. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A mixed finite element for coupled thermo‐hydro‐mechanical (THM) analysis in unsaturated porous media is proposed. Displacements, strains, the net stresses for the solid phase; pressures, pressure gradients, Darcy velocities for pore water and pore air phases; temperature, temperature gradients, the total heat flux are interpolated as independent variables. The weak form of the governing equations of coupled THM problems in porous media within the element is given on the basis of the Hu–Washizu three‐filed variational principle. The proposed mixed finite element formulation is derived. The non‐linear version of the element formulation is further derived with particular consideration of the THM constitutive model for unsaturated porous media based on the CAP model. The return mapping algorithm for the integration of the rate constitutive equation, the consistent elasto‐plastic tangent modulus matrix and the element tangent stiffness matrix are developed. For geometrical non‐linearity, the co‐rotational formulation approach is utilized. Numerical results demonstrate the capability and the performance of the proposed element in modelling progressive failure characterized by strain localization and the softening behaviours caused by thermal and chemical effects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the characteristics of the combined fine‐blanking and extrusion process and gives a detailed analysis of the process with the finite‐element method. To carry out the simulation step by step and avoid the tendency to diverge in the calculations, the remeshing, tracing and golden section methods were developed and introduced into the finite‐element program. Different boundary conditions were used in the simulation; the mesh distortion, field of material flow, and the stress and strain distributions were obtained. From the simulated results, the deformation characteristics under different boundary conditions were revealed. An experiment was also carried out to verify the simulated results. A large strain analysis technique was chosen to determine the effective strain distribution based on the experiment. The effective strain distributions from the simulation are in accordance with the effective strain distributions and the hardness distributions from the experiment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Grinding of ceramic‐metal‐compounds – finite element analysis simulation of the grinding process of hybrid stratified compounds In this paper, the subproject TP 8 “Grinding of ceramic‐metal‐compounds” is been introduced. An adapted grinding strategy should be created for the production of a ceramic‐cemented carbide compound drill. This aim should be obtained with experimental analysis and the use of finite element analysis to simulate the grinding process of ceramic‐cemented carbide compound drill. Furthermore a basic approach for simulating the grinding process of hybrid stratified compounds is been presented, which should be a basis for a finite element analysis simulation of a grinding process of ceramic‐cemented carbide compound drill.  相似文献   

5.
This study developed an element‐free Galerkin method (EFGM) to simulate notched anisotropic plates containing stress singularities at the notch tip. Two‐dimensional theoretical complex displacement functions are first deduced into the moving least‐squares interpolation. The interpolation functions and their derivatives are then determined to calculate the nodal stiffness using the Galerkin method. In the numerical validation, an interface layer of the EFGM is used to combine the mesh between the traditional finite elements and the proposed singular notch EFGM. The H‐integral determined from finite element analyses with a very fine mesh is used to validate the numerical results of the proposed method. The comparisons indicate that the proposed method obtains more accurate results for the displacement, stress, and energy fields than those determined from the standard finite element method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Fabric drapes are typical large displacement, large rotation and small strain problems. Compared to conventional geometric non‐linear shell analyses, computational fabric drape analysis is particularly challenging due to the extremely weak bending rigidities of fabrics. Compared to continuum shell finite element methods, grid‐ or particle‐based methods appear to be more successful in high drapeability problems. The latter methods often resort to simple particle mechanics and formulate the elastic energy in terms of the inter‐particle distances and trigonometrical functions of the angles between the straight lines joining adjacent particles. In this paper, the co‐rotational approach and commonly employed assumptions for small strain problems in finite element analysis will be adopted to formulate the elastic energy. It will be seen that the internal force vector and the stiffness matrix are considerably simpler than other grid‐based models, yet the sparsity of the tangential stiffness matrix remains unchanged. A number of examples are considered and the predicted results are promising. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A finite element algorithm has been developed for the efficient analysis of smart composite structures with piezoelectric polymer sensors or/and actuators based on piezoelectro‐hygro‐thermo‐viscoelasticity. Variational principles for anisotropic coupled piezoelectro‐hygro‐thermo‐viscoelasto‐dynamic problems have also been proposed in this study. As illustrative studies, dynamic responses in laminated composite beams and plates with PVDF sensors and actuators are obtained as functions of time using the present finite element procedures. The voltage feedback control scheme is utilized. The proposed numerical method can be used for analysing problems in the design of smart structures as well as smart sensors and actuators. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The purpose of the present work is to model and to simulate the coupling between the electric and mechanical fields. A new finite element approach is proposed to model strong electro‐mechanical coupling in micro‐structures with capacitive effect. The proposed approach is based on a monolithic formulation: the electric and the mechanical fields are solved simultaneously in the same formulation. This method provides a tangent stiffness matrix for the total coupled problem which allows to determine accurately the pull‐in voltage and the natural frequency of electro‐mechanical systems such as MEMs. To illustrate the methodology results are shown for the analysis of a micro‐bridge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A computational scheme for the analysis and optimization of quasi‐static thermo‐mechanical processes is presented in this paper. In order to obtain desirable mechanical transformations in a workpiece using a thermal treatment process, the optimal control parameters need to be determined. The problem is addressed by posing the process as a decoupled thermo‐mechanical finite element problem and performing an optimization using gradient methods. The forward problem is solved using the Eulerian formulation since it is computationally more efficient compared to an equivalent Lagrangian formulation. The design sensitivities required for the optimization are developed analytically using direct differentiation. This systematic design approach is applied to optimize a laser forming process. The objective is to maximize the angular distortion of a specimen subject to the constraint that the phase transition temperature is not exceeded at any point in the model. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we present a novel approach to the finite element modelling of reinforced‐concrete (RC) structures that provides the details of the constitutive behavior of each constituent (concrete, steel and bond‐slip), while keeping formally the same appearance as the classical finite element model. Each component constitutive behavior can be brought to fully non‐linear range, where we can consider cracking (or localized failure) of concrete, the plastic yielding and failure of steel bars and bond‐slip at concrete steel interface accounting for confining pressure effects. The standard finite element code architecture is preserved by using embedded discontinuity (ED‐FEM) and extended (X‐FEM) finite element strain representation for concrete and slip, respectively, along with the operator split solution method that separates the problem into computing the deformations of RC (with frozen slip) and the current value of the bond‐slip. Several numerical examples are presented in order to illustrate very satisfying performance of the proposed methodology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study develops a novel multiscale analysis method to predict thermo‐mechanical performance of periodic porous materials with interior surface radiation. In these materials, thermal radiation effect at microscale has an important impact on the macroscopic temperature and stress field, which is our particular interest in this paper. Firstly, the multiscale asymptotic expansions for computing the dynamic thermo‐mechanical coupling problem, which considers the mutual interaction between temperature and displacement field, are given successively. Then, the corresponding numerical algorithm based on the finite element‐difference method is brought forward in details. Finally, some numerical results are presented to verify the validity and relevancy of the proposed method by comparing it with a direct finite element analysis with detailed numerical models. The comparison shows that the new method is effective and valid for predicting the thermo‐mechanical performance and can capture the microstructure behavior of periodic porous materials exactly.s Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin‐shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff‐Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work, the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the C1 continuity property required for the Kirchhoff‐Love formulation and are highly efficient for the acoustic field computations. We verify the proposed isogeometric formulation through a closed‐form solution of acoustic scattering over a thin‐shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural‐acoustic analysis of shells.  相似文献   

13.
In this paper we use step size adjustment and extrapolation methods to improve Moreau's time‐stepping scheme for the numerical integration of non‐smooth mechanical systems, i.e. systems with impact and friction. The scheme yields a system of inclusions, which is transformed into a system of projective equations. These equations are solved iteratively. Switching points are time instants for which the structure of the mechanical system changes, for example, time instants for which a sticking friction element begins to slide. We show how switching points can be localized and how these points can be resolved by choosing a minimal step size. In order to improve the integration of non‐smooth systems in the smooth parts, we show how the time‐stepping method can be used as a base integration scheme for extrapolation methods, which allow for an increase in the integration order. Switching points are processed by a small time step, while time intervals during which the structure of the system does not change are computed with a larger step size and improved integration order. The overall algorithm, which consists of a time‐stepping module, an extrapolation module and a step size adjustment module, is discussed in detail and some examples are given. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In a companion paper, the effects of approximations in the flexural‐torsional stability analysis of beams was studied, and it was shown that a second‐order rotation matrix was sufficiently accurate for a flexural‐torsional stability analysis. However, the second‐order rotation matrix is not necessarily accurate in formulating finite element model for a 3‐D non‐linear analysis of thin‐walled beams of open cross‐section. The approximations in the second‐order rotation matrix may introduce ‘self‐straining’ due to superimposed rigid‐body motions, which may lead to physically incorrect predictions of the 3‐D non‐linear behaviour of beams. In a 3‐D non‐linear elastic–plastic analysis, numerical integration over the cross‐section is usually used to check the yield criterion and to calculate the stress increments, the stress resultants, the elastic–plastic stress–strain matrix and the tangent modulus matrix. A scheme of the arrangement of sampling points over the cross‐section that is not consistent with the strain distributions may lead to incorrect predictions of the 3‐D non‐linear elastic–plastic behaviour of beams. This paper investigates the effects of approximations on the 3‐D non‐linear analysis of beams. It is found that a finite element model for 3‐D non‐linear analysis based on the second‐order rotation matrix leads to over‐stiff predictions of the flexural‐torsional buckling and postbuckling response and to an overestimate of the maximum load‐carrying capacities of beams in some cases. To perform a correct 3‐D non‐linear analysis of beams, an accurate model of the rotations must be used. A scheme of the arrangement of sampling points over the cross‐section that is consistent with both the longitudinal normal and shear strain distributions is needed to predict the correct 3‐D non‐linear elastic–plastic behaviour of beams. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This paper gives an explicit geometric interpretation of finite element formulations of the eddy‐current problem. The paper shows, step‐by‐step how the eddy‐current problem can be implemented in a finite element kind of software system exploiting familiar geometric ideas such as lengths of edges, areas of faces, volumes of tetrahedra, and the mutual interconnections between the simplices of a mesh. The approach is a specific case of the so‐called geometric techniques. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Computer‐aided mesh generation (CAMG) dictated solely by the minimal key set of requirements of geometry, material, loading and support condition can produce ‘mega‐sized’, arbitrary‐shaped distorted elements. However, this may result in substantial cost saving and reduced bookkeeping for the subsequent finite element analysis (FEA) and reduced engineering manpower requirement for final quality assurance. A method, denoted as c‐type, has been proposed by constructively defining a finite element space whereby the above hurdles may be overcome with a minimal number of hyper‐sized elements. Bezier (and de Boor) control vectors are used as the generalized displacements and the Bernstein polynomials (and B‐splines) as the elemental basis functions. A concomitant idea of coerced parametry and inter‐element continuity on demand unifies modelling and finite element method. The c‐type method may introduce additional control, namely, an inter‐element continuity condition to the existing h‐type and p‐type methods. Adaptation of the c‐type method to existing commercial and general‐purpose computer programs based on a conventional displacement‐based finite element method is straightforward. The c‐type method with associated subdivision technique can be easily made into a hierarchic adaptive computer method with a suitable a posteriori error analysis. In this context, a summary of a geometrically exact non‐linear formulation for the two‐dimensional curved beams/arches is presented. Several beam problems ranging from truly three‐dimensional tortuous linear curved beams to geometrically extremely non‐linear two‐dimensional arches are solved to establish numerical efficiency of the method. Incremental Lagrangian curvilinear formulation may be extended to overcome rotational singularity in 3D geometric non‐linearity and to treat general material non‐linearity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
A path‐following non‐linear elastic analysis for structures composed of assemblages of flat slender elastic panels is presented. The proposed path‐following method employs FEM technology and a kinematical model to analyse these structures using a Koiter asymptotic approach. As a result it is possible to verify the accuracy achieved by the asymptotic method. The proposed mixed path‐following formulation is both efficient and robust with regards to the locking extrapolation phenomenon that strongly affects compatible formulations. The use of an HC finite element makes it possible to avoid the problem of the finite rotations in the space, maintaining a high degree of continuity and making the numeric formulation simple and efficient. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes a method to predict the thermal ageing effect on fracture toughness of CF8M cast stainless steel. The proposed method is based on multi‐axial fracture strain combined with finite element damage analysis to simulate ductile tearing. Multi‐axial fracture strain loci of un‐aged and aged CF8M are determined by analyzing notched bar tensile test. It is shown that the thermal ageing effect on multi‐axial fracture strain loci can be characterized by one constant. It is further shown that J‐resistance curves of un‐aged and aged CF8M can be predicted well from finite element damage analysis using multi‐axial fracture strain loci. Implication of present results to practical application of crack assessment of aged cast stainless steels is discussed.  相似文献   

19.
A model with rejoined platforms is designed to study the casting defects in the platforms of Ni‐based single crystal superalloy. The results of this study indicate the formation of sliver defects in different regions of the platforms. In the platforms, the dendrite deviation started at the section extension region and the misoriented dendrites could continue to grow into the platform to form sliver defects through the competitive growth with the adjacent dendrites. Furthermore, sliver defects formed as a result of the deformation of secondary dendrites induced by the thermal contraction stress based on the polar diagram analysis and the finite element simulation results. Finally, three different factors contributing to the formation of sliver defects in the extended cross‐section platforms are speculated as follows: the orientation of the deformed dendrites, the local thermal field condition, and the sufficient growth space.
  相似文献   

20.
The effects of thermal creep of prestressed steel on post‐tensioned concrete slabs in and after fire were investigated based on an existing thermal creep model and calibrated parameters in this paper. A nonlinear finite element model was built up employing ABAQUS package, taking into account frictionless contact behaviour between prestressed steel tendons and surrounding concrete. The nonlinear material behaviour of concrete and prestressed steel at elevated temperatures was taken into account, where three material models for prestressed steel were adopted with or without considering thermal creep, and based on the model from EN 1992‐1‐2. The finite element model developed was verified against experimental results from the literature, showing that the model considering thermal creep was more accurate. Then the fire resistance period and responses of post‐tensioned concrete slabs in and after fire were investigated based on the verified model. Ignoring thermal creep underestimated the fire resistance period but overestimated the residual tendon stresses. The model from EN 1992‐1‐2 achieved nearly the same effects as the model considering thermal creep in fire but might yield inaccurate evaluation of residual tendon stresses. The model considering thermal creep worked well under fire and in the post‐fire conditions yielding reasonable predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号