首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Advanced Robotics》2013,27(2):169-190
As a reptile animal crawls in a cluttered environment, so a quadruped robot should be able to crawl on an irregular ground profile with its static stability by adopting the straightgoing and standstill-turning free gaits. The generalized and explicit formulations for the automatic generation of straight-going gaits and various standstill-turning gaits are presented in this paper. The maximized stride for the straight-going gait and the maximum turning angle for the turning gait of a quadruped robot named TITAN-VIII in a gait cycle are discussed by considering the robot's mechanism constraints and the irregularities of the ground profile. The control algorithm, including control of the joint positions of the robot, is described to implement the desired walking path of the quadruped robot. The effectiveness of the proposed method is demonstrated through experimental result.  相似文献   

2.
Reduction of the energy consumption is one of the most important problems to utilize quadruped walking robots for various works on rugged terrain. The authors have studied basic strategy to achieve high energy efficiency when the quadruped walking robot do the motion essentially requires positive power by the analysis of body rising motion. This paper discusses the energy efficiency of the slope walking motion by the quadruped walking robot. First, we investigate the walking posture in consideration of ideal actuator characteristics where the robot consumes few negative powers at each joint which causes the main energy loss of the walking robot. Then, we investigate optimal walking posture in consideration of DC motor characteristics by the full search of three gait parameters which define the crawl gait. Furthermore, we derive the optimal walking motion by the optimization of three gait parameters which are kept constant during one cycle gait and instantaneous parameters such as body velocity and supporting forces changed at each moment simultaneously.  相似文献   

3.
Omnidirectional static walking of a quadruped robot   总被引:1,自引:0,他引:1  
In this paper, we propose a successive gait-transition method for a quadruped robot to realize omnidirectional static walking. The gait transition is successively performed among the crawl gaits and the rotation gaits, while the feet hold in common positions before and after gait transition. The gait-transition time is reduced by carefully designing the foot positions of the crawl gait and the rotation gait, while limiting the feet in rectangular reachable motion ranges. Computer simulations and experiments were executed to show the validity and the limitation of the proposed gait-transition method.  相似文献   

4.
由于机器人数学描述的复杂性,使得在机器人运动学、动力学分析方面显得较为困难,计算机虚拟仿真技术在该领域的应用为机器人的运动特性分析提供了依据.文中建立了一个连续转动式腿机构的四足步行机器人模型,并规划了该机器人的一种直线爬行步态,利用ADAMS虚拟样机软件对机器人的爬行步态进行了动力学仿真,得到了机器人各个关节相关物理量的变化曲线,分析了四个髋关节的驱动力矩在步行过程中的变化情况.通过仿真,验证了步态规划的合理性,同时为进一步选择电机、分析机器人系统的动态特性提供了依据.  相似文献   

5.
《Advanced Robotics》2013,27(7):609-627
In this paper, we consider the problem of planning a feasible path for a quadruped walking robot in an environment of obstacles. In conventional path-planning problems, the main focus is merely collision avoidance with obstacles since a wheeled robot is involved. However, in the case of a legged robot, both collision avoidance and crossing over obstacles must be taken into account in the process of path planning. Furthermore, the constraints of the gait should be considered to guarantee the feasibility of a planned path. To resolve this complicated problem in a systematic way, a new concept of an artificial thermal field is proposed. Specifically, with the assumption that a robot walks with a periodic crab gait, a robot and obstacles in a three-dimensional (3D) space are projected on a 2D plane. Next, the 2D obstacles are transformed into the configuration space of a quadruped robot. A feasible path is finally sought in an artificial thermal field which is constructed numerically on the discretized configuration space. To verify the efficacy of the proposed approach, three notable simulation results are provided.  相似文献   

6.
7.
Generating a robust gait is one of the most important factors to improve the adaptability of quadruped robots on rough terrains. This paper presents a new continuous free gait generation method for quadruped robots capable of walking on the rough terrain characterized by the uneven ground and forbidden areas. When walking with the proposed gait, the robot can effectively maintain its stability by using the Center of Gravity (COG) trajectory planning method. After analyzing the point cloud of rough terrain, the forbidden areas of the terrain can be obtained. Based on this analysis, an optimal foothold search strategy is presented to help quadruped robot to determine the optimum foothold for the swing foot automatically. In addition, the foot sequence determining method is proposed to improve the performance of robot. With the free gait proposed in this paper, quadruped robot can walk through the rough terrains automatically and successfully. The correctness and effectiveness of the proposed method is verified via simulations.  相似文献   

8.
《Advanced Robotics》2013,27(5):415-417
The ability to develop a gait with one or more legs missing is an important issue for multi-legged robots used in demining applications. Accordingly, this paper presents a three-legged gait under the assumption that one leg of a quadruped walking robot is missing. After outlining a posture classification scheme for three-legged walking, the kick-and-swing gait is proposed as a basic and reasonable gait for three-legged walking and analyzed using a simple dynamic model. Minimum energy gait planning and an active shock-absorbing method are also investigated. The validity of the proposed gait is shown based on experiments using the quadruped walking robot TITAN VIII.  相似文献   

9.
It is known that the kinematics of a quadruped robot is complex due to its topology and the redundant actuation in the robot. However, it is fundamental to compute the inverse and direct kinematics for the sophisticated control of the robot in real-time. In this paper, the translational crawl gait of a quadruped robot is introduced and the approach to find the solution of the kinematics for such a crawl motion is proposed. Since the resulting kinematics is simplified, the formulation can be used for the real-time control of the robot. The results of simulation and experiment shows that the present method is feasible and efficient.  相似文献   

10.
It is important for walking robots such as quadruped robots to have an efficient gait. Since animals and insects are the basic models for most walking robots, their walking patterns are good examples. In this study, the walking energy consumption of a quadruped robot is analyzed and compared with natural animal gaits. Genetic algorithms have been applied to obtain the energy-optimal gait when the quadruped robot is walking with a set velocity. In this method, an individual in a population represents the walking pattern of the quadruped robot. The gait (individual) which consumes the least energy is considered to be the best gait (individual) in this study. The energy-optimal gait is analyzed at several walking velocities, since the amount of walking energy consumption changes if the walking velocity of the robot is changed. The results of this study can be used to decide what type of gait should be generated for a quadruped robot as its walking velocity changes. This work was presented, in part, at the Sixth International Symposium on Artificial Life and Robotics, Tokyo, Japan, January 15–17, 2001.  相似文献   

11.
《Advanced Robotics》2013,27(13-14):1539-1558
The capability of stable walking on irregular terrain is the primary advantage of legged robots over wheeled mobile robots. However, the traditional foothold selection-based gait generation algorithms are not suitable at some points for blind robots which cannot obtain the exact terrain information. A velocity-based gait generation algorithm with real-time adaptation rules which are necessary for steady walking is suggested. Particularly, we have developed a steady crawl gait with duty factor β = 0.75. The main feature of the suggested algorithm is that it is not based on foothold selection and it can be used for the walking of blind robots on more realistic irregular terrain. The adaptation rules are the translational velocity modification to satisfy the steady gait requirement and the swing period modification to avoid the kinematic limitation. The suggested gait generation algorithm has been implemented in a simple quadruped robot that has a total of eight actuated joints on the legs. Using PD controllers for each actuated joint for the trajectory following and the adaptation algorithm of gait parameters, the steady periodic crawl gait on irregular terrain has been demonstrated.  相似文献   

12.
具备学习能力是高等动物智能的典型表现特征, 为探明四足动物运动技能学习机理, 本文对四足机器人步 态学习任务进行研究, 复现了四足动物的节律步态学习过程. 近年来, 近端策略优化(PPO)算法作为深度强化学习 的典型代表, 普遍被用于四足机器人步态学习任务, 实验效果较好且仅需较少的超参数. 然而, 在多维输入输出场 景下, 其容易收敛到局部最优点, 表现为四足机器人学习到步态节律信号杂乱且重心震荡严重. 为解决上述问题, 在元学习启发下, 基于元学习具有刻画学习过程高维抽象表征优势, 本文提出了一种融合元学习和PPO思想的元近 端策略优化(MPPO)算法, 该算法可以让四足机器人进化学习到更优步态. 在PyBullet仿真平台上的仿真实验结果表 明, 本文提出的算法可以使四足机器人学会行走运动技能, 且与柔性行动者评价器(SAC)和PPO算法的对比实验显 示, 本文提出的MPPO算法具有步态节律信号更规律、行走速度更快等优势.  相似文献   

13.
《Advanced Robotics》2013,27(9):863-878
Fault tolerance is an important aspect in the development of control systems for multi-legged robots since a failure in a leg may lead to a severe loss of static stability of a gait. In this paper, an algorithm for tolerating a locked joint failure is described in gait planning for a quadruped robot with crab walking. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue walking maintaining static stability. A strategy for fault-tolerant gaits is described and, especially, a periodic gait is presented for crab walking of a quadruped. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The adjustment procedure from a normal gait to the proposed fault-tolerant crab gait is shown to demonstrate the applicability of the proposed scheme.  相似文献   

14.
Quadruped robots show excellent application prospects in complex environment detection and rescue. At present, scholars mainly focus on quadruped walking in rigid environments. However, quadruped robots often need to pass through uneven and soft unconstructed terrains, prone to slip and impact. The mismatch between the planned foothold position and the real one resulting from environmental uncertainties makes the robot unstable. In this paper, the state estimation and traversability map construction methods are proposed for quadruped robots to achieve stable walking in an unstructured environment, especially on soft terrains. First, the Error-state Kalman Filter (ErKF) is extended by optimizing the leg odometry information to get an accurate robot state, especially in soft, uneven terrain. The ErKF method fuses the sensor data from the inertial measurement unit, laser, camera, and leg odometry. The leg odometry is optimized by considering the foot slippage, which easily occurs in soft uneven terrains. Then, the unstructured environment is parameterized and modeled by the terrain inclination, roughness, height, and stiffness. A traversability map, which is essential for robot path and foothold planning in autonomous movement, is constructed with the above parameters. Finally, the proposed method is verified by simulation and experiments. The results show that the quadruped robot can walk stably on different soft and uneven terrains.  相似文献   

15.
The statically stable gait control of a mammal-like quadruped robot that provides an adequate or stable manner of traversing over irregular terrain was addressed. The reinforced wave gait which integrates new parameters of the lateral offset and displacements of the center of gravity (COG) based on the profiles of standard wave gait was investigated. The continuous and discontinuous motion trajectory of a robot’s COG in the periodic reinforced wave gait could be realized. The longitudinal and lateral stability margins of a reinforced wave gait were formulated for the gait generation and control of a quadruped robot. Moreover, the effects of the lateral offset on the stability, velocity and the energy efficiency were studied in details. The reinforced wave gait with lateral sway motion adequately improved the stability, and two particular gait patterns that involve the lateral sway motion for a maximal velocity and maximum achievable stability were described. With consideration of a quadruped robot with asymmetric carrying loads on its body, a scheme that relates to the gait parameters of the displacement of a robot’s COG to avoid losing stability was proposed. The simulation and experimental results about the effects of lateral offset added in the reinforced wave gait on the minimum power consumption during a quadruped robot walking on a flat terrain indicated that the reinforced wave gait with a larger lateral offset would generate a better wave gait with a higher velocity and energy efficiency.  相似文献   

16.
《Advanced Robotics》2013,27(5):503-520
An oscillator-type gait controller for a quadruped robot with antagonistic pairs of pneumatic actuators is proposed. By using the controller, a feasibility study on the stability of gait patterns with changeable body stiffness is reported. The periodic motions of the legs are generated and controlled by an oscillator network with state resetting. This type of controller has robustness in its gaits against variation in walking conditions or changes of environment. However, it sometimes loses robustness under conditions of actuation delay, decrease of actuator accuracy, etc. We investigated whether an oscillator-type controller with phase resetting is also effective under such conditions. The stability of locomotion also strongly depends on the mechanical properties of the body mechanism, especially the joint stiffness. In this report, the muscle tone of the robot on the pitching motion at the trunk is changeable by using the changeable elasticity of the pneumatic actuators. The stability of quadruped locomotion in walk and trot patterns with changeable body stiffness was evaluated with numerical simulations and hardware experiments.  相似文献   

17.
We describe the design, construction and control of a quadruped robot which walks on uneven terrain. A control system which produces a statically stable gait has been implemented; results showing a straight and turning gait are presented. The control of quadruped robots poses interesting challenges due to a small stability margin (when compared to hexapods for example). For this reason most implemented systems for outdoor walking on uneven terrain have been hexapods. The system described here has the added virtue of using very few inexpensive sensors and actuators. One of the aims of this work is to build a reduced complexity (low power, low mass and direct drive) walking robot for statically stable walking. The other aim is to compare the performance of this robot with a wheeled robot roughly the same size and weight. In this paper we report on progress towards the first of these two goals using a traverse across an obstacle field as an example.  相似文献   

18.
For the existing problems of walking chair robot such as simple function,lower bearing capacity and not walking in complex environment,a novel varistructured quadruped / biped human-carrying walking chair robot is proposed.The proposed robot could be used as biped and quadruped walking chair robots.Considering the conversion of the walking chair robot from the quadruped to the biped or vice versa,6-UPS and 2-UPS+UP(U,P and S are universal joint,the prismatic pair,and sphere joint,respectively) parallel mechanisms are selected as the leg mechanism of the biped walking robot and quadruped walking robot,respectively.Combining the screw theory and theory of mechanism,the degrees of freedom of the leg mechanism and the body mechanism in diferent motion states are computed so as to meet the requirements of mechanism design.The motion characteristics of the 2-UPS+UP parallel mechanism which is the key part of the walking chair robot are analyzed.Then,the workspace of the moving platform is drawn and the efect of the structural parameters on the workspace volume is studied.Finally,it is found that the volume of the workspace of the moving platform is bigger when the side length ratio and the vertex angle ratio of the fxed platform and the moving platform which are isosceles triangles are close to 1.This study provides a theoretical foundation for the prototype development.  相似文献   

19.
In this paper, a general study on improving adaptability of quadruped walking and climbing robot in complex environment is presented. First, a sensing system composed of range and gyroscope sensors in a novel arrangement is developed. By combining the sensing signals and the internal state of the robot, the surface geometry of the environment is sufficiently reconstructed in real-time. Secondly, a planning algorithm for the robot to overcome the reconstructed environment is conducted. Based on the reshaped surface, the planning algorithm not only provides the exact body trajectory and foot positions but also the adaptability of the robot in a specific environment. A method to improve the adaptability of the walking and climbing robot is also introduced. Thanks to the adherent ability of the robot, the center of gravity of the robot is allowed to move outside the support polygon to increase the reach-ability of the next swing leg. Finally, the effectiveness of the proposed approach is verified by the performances of the experiments in complex environments using a quadruped walking and climbing robot named MRWALLSPECT IV.  相似文献   

20.
Fault-tolerant locomotion of the hexapod robot   总被引:4,自引:0,他引:4  
In this paper, we propose a scheme for fault detection and tolerance of the hexapod robot locomotion on even terrain. The fault stability margin is defined to represent potential stability which a gait can have in case a sudden fault event occurs to one leg. Based on this, the fault-tolerant quadruped periodic gaits of the hexapod walking over perfectly even terrain are derived. It is demonstrated that the derived quadruped gait is the optimal one the hexapod can have maintaining fault stability margin nonnegative and a geometric condition should be satisfied for the optimal locomotion. By this scheme, when one leg is in failure, the hexapod robot has the modified tripod gait to continue the optimal locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号