首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure and mechanical properties of austempered high silicon cast steel pro and after treating with a modifier containing titanium, vanadium, and rare earth metals (so-called Ti-V-RE modifier) and austempered at different temperatures are investigated. The results show that the dendritic austempered structure and the blocky retained austenite are reduced after treating with the Ti-V-RE modifier. The modification can obviously improve the mechanical properties of austempered high silicon cast steel. The austempering temperature at which the optimum impact toughness is obtained shifts from about 320 °C for the steel unmodified to about 360 °C for the steel modified. High impact toughness is obtained in austempered high silicon cast steel high silicon cast steel when the retained austenite amount is about 15 to 25 pct for the modified steel and 20 to 35 pct for the unmodified steel.  相似文献   

2.
The microstructural evolution of a novel high-silicon carbide-free bainitic steel at different austempering temperatures is investigated. The microstructure is evaluated by means of optical and electron microscopy, X-ray diffraction, microhardness, and nanohardness. Results show a variation in the amount of stabilized retained austenite changing the temperature of the isothermal treatment. In particular, it is observed an increase in the retained austenite volume fraction increasing the temperature up to 350 °C, while further increase leads to a reduction. Moreover, increasing the isothermal holding temperature from 250 °C, through 300, 350, and 370 °C, a progressive bainite coarsening and an increase in the amount of stabilized carbon-enriched retained austenite are observed. Tensile tests reveal an excellent combination of mechanical properties: mechanical strength in the range 1276–1988 MPa and total elongation 0.18–0.44.  相似文献   

3.
High Si contents in nodular cast irons lead to a significant volume fraction of retained austenite in the material after the austempering treatment. In the present work, the influence of the amount and morphology of this phase on the mechanical properties (proof stress, ultimate tensile strength (UTS), elongation, and toughness) has been analyzed for different austempering conditions. After 300 °C isothermal treatments at intermediate times, the austenite is plastically stable at room temperature and contributes, together with the bainitic ferrite, to the proof stress and the toughness of the material. For austenite volume fractions higher than 25 pct, the proof stress is controlled by this phase and the toughness depends mainly on the stability of γ. In these conditions (370 °C and 410 °C treatments), the present material exhibits a transformation-induced plasticity (TRIP) effect, which leads to an improvement in ductility. It is shown that the strain level necessary to initiate the martensitic transformation induced by deformation depends on the carbon content of the austenite. The martensite formed under TRIP conditions can be of two different types: “autotempered” plate martensite, which forms at room temperature from an austenite with a quasi-coherent epsilon carbide precipitation, and lath martensite nucleated at twin boundaries and twin intersections.  相似文献   

4.
Austempered grey cast iron (AGI) has emerged as a major engineering material in recent years because of its attractive mechanical properties. The main aim of this investigation is to assess the mechanical properties of copper alloyed AGI. Alloyed grey cast iron specimens are subjected to austempering heat treatment at six different temperatures for four different time periods. The resulting microstructures have been evaluated and characterised by means of light microscope and scanning electron microscope and X-Ray diffraction analysis. The microstructural features of AGI such as austenite content and its carbon content have been also found to influence the hardness, tensile properties and elongation. Both duration of the austempering time and the austempering temperature affect the mechanical properties of AGI. The hardness, tensile strength and ductility initially increase, and thereafter it decreases on longer periods of austempering. On the other hand hardness, tensile strength decreases as increasing austempering temperature, while ductility increases. The best combination of hardness 380BHN and strength 332?MPa; observed at 927°C of austenitising and 260°C of austempering temperature for 60?min.  相似文献   

5.
Manganese enrichment of austenite during prolonged intercritical annealing was used to produce a family of transformation-induced plasticity (TRIP) steels with varying retained austenite contents. Cold-rolled 0.1C-7.1Mn steel was annealed at incremental temperatures between 848 K and 948 K (575 °C and 675 °C) for 1 week to enrich austenite in manganese. The resulting microstructures are comprised of varying fractions of intercritical ferrite, martensite, and retained austenite. Tensile behavior is dependent on annealing temperature and ranged from a low strain-hardening “flat” curve to high strength and ductility conditions that display positive strain hardening over a range of strain levels. The mechanical stability of austenite was measured using in-situ neutron diffraction and was shown to depend significantly on annealing temperature. Variations in austenite stability between annealing conditions help explain the observed strain hardening behaviors.  相似文献   

6.
A transmission electron microscope (TEM) equipped with an energy dispersive spectroscopy (EDS) system was used to study the bainitic reaction in a conventional and a successive austempering process for 1 wt pct Mn ductile iron. In the case of conventional austempering, the specimens were full austenitized at 900 °C and then austempered at 375 °C (high austempering temperature) and 315 °C (low austempering temperature) for different periods. In the case of the successive austempering process, following austempering at 375 °C for different periods, specimens were austempered at 315 °C, and subsequently quenched in ice water. The TEM-EDS study showed that carbide precipitation in the ferritic and retained austenitic component of bainite is a function of the local concentrations of the alloying elements, austempering time, and temperature. After a short time at high austempering temperature, carbide-free bainite forms near graphite nodules. Longer austempering time or lower austempering temperature encourages carbide precipitation in the bainitic ferrite. A long austempering time at high temperature leads to decomposition of retained austenite to ferrite and carbide. A rough inspection shows that the precipitated carbides in the ferritic component of specimens austempered at low temperature lie at an angle of about 40 to 50 deg to the sheaf axis.  相似文献   

7.
The effects of austempering on the microstructures and mechanical performances of cast high carbon silicon and manganese steel (HCSMS) containing 1.0 wt.%C‐2.5 wt.%Si‐1.5 wt.%Mn‐1.0 wt.%Cr‐0.5 wt.%Cu were studied. The test results show a plate‐like morphology of bainitic ferrite. Each plate of the ferrite is surrounded by a thin layer of retained austenite when the austempering temperature is low, whereas large blocky areas of retained austenite are observed when the temperature is higher. The amount of retained austenite in the bainitic structure increases with increasing isothermal quenching temperature. Austempering results in a significant improvement in the mechanical performances of HCSMS. The main effect of the austempering temperature on the mechanical performances is that hardness and strength are decreased and elongation, impact toughness and fracture toughness are increased with increasing temperature. Cast HCSMS has excellent comprehensive mechanical performance when austenized at 593K.  相似文献   

8.
The influence of forming temperature and strain rate on the ductility and strain-induced transformation behavior of retained austenite in a ferritic 0.4C-1.5Si-1.5Mn (wt pct) dual-phase steel containing fine retained austenite islands of about 15 vol pct has been investigated. Ex- cellent combinations of total elongations (TELs), about 48 pct, and tensile strength (TS), about 1000 MPa, were obtained at temperatures between 100 °C and 200 °C and at a strain rate of 2.8 X 10-4/s. Under these optimum forming conditions, the flow curves were characterized by intensive serrations and increased strain-hardening rate over a large strain range. The retained austenite islands were mechanically the most stable at temperatures between 100 °C and 200 °C, and the retained austenite stability appeared to be mainly controlled by strain-induced martensite and bainite transformations (SIMT and SIBT, respectively), with deformation twinning occur- ring in the retained austenite. The enhanced TEL and forming temperature dependence of TEL were primarily connected with both the strain-induced transformation behavior and retained aus- tenite stability.  相似文献   

9.
In this work, a low‐carbon transformation‐induced‐plasticity (TRIP) seamless steel tube (Fe–0.15C–1.34Si–1.45Mn–0.029Nb–0.024Ti, in wt%), having potential in application of hydroforming process, has been successfully manufactured by using piercing, cold‐drawing, and two‐stage heat‐treatment process. The optimal heat‐treatment conditions, inter‐critical annealing (IA), and isothermal bainite treatment (IBT) were firstly obtained to maximize the volume fraction and stability of the retained austenite (RA). The effects of temperature and holding time IBT on the microstructures of the TRIP steel tube were studied via optical microscopy (OM), scanning microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffractometer (XRD). The mechanical properties in the axial direction and hydroformability were also evaluated by conventional tensile test and flaring test, respectively. Two‐stage heat‐treatment was finally performed to achieve the required mechanical properties for the hydroformed tube. The results shows that the RA volume fraction increased at first and then decreased with the increase of IBT holding time and IBT temperature for a particular set of IA temperature and IA holding time. It was also demonstrated that high tensile strength of 618 MPa, total elongation of 35.5%, n‐value of 0.23, and better hydroformability could be successfully produced in this TRIP steel tube at IA temperature of 800°C, holding for 10 min, and IBT of 410°C for 4 min holding time.  相似文献   

10.
A new method of refining the microstructure of austempered ductile iron (ADI) by thermome chanical processing is investigated. Refinement of microstructure is effected by grain refinement of parent austenite by hot deformation in the austenitizing temperature range, before the austempering treatment. The effects of austenite deformation on the kinetics of austempering reaction and the microstructure development were studied using metallography and X-ray diffraction (XRD), at different austempering temperatures and deformations. The process window for optimum microstructure was determined in terms of the parameters involved. Deformation of 40 to 60 pct could be imparted in the temperature range 900 °C to 1025 °C, resulting in a reduction in the prior austenite grain size by 35 to 50 pct and ferrite size in ausferrite by 70 to 75 pct. The effects of austenitization temperature on the austempered microstructure were also studied.  相似文献   

11.
The transformation of a ductile iron at 410 °C for different times, after austenitization for 30 minutes at 900 °C, is analyzed in detail. Upper bainite and a high volume fraction of austenite are formed for intermediate annealing times. A certain amount of martensite is observed after quenching not only for short transformation times but also for intermediate times. The formation of the martensite on cooling after intermediate transformation times is due to the decrease in carbon concentration of the retained austenite because of the homogeneous precipitation of epsilon carbides within. This homogeneous precipitation of epsilon carbide inside austenite is unambiguously observed. The epsilon carbide, pre-precipitated in austenite, which transforms to martensite on cooling, continues growing in the martensite after transformation. For long times of austempering at 410 °C, some complex large carbides or silicocarbides are formed, probably from the epsilon carbide, which result in the total decomposition of austenite.  相似文献   

12.
A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing. This sort of low carbon steel only contains alloying elements of silicon and manganese rather than nickel and chromium. Its mechanical properties were enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite when it was strained at temperatures between Ms and Md, because retained austenite was moderately stabilized due to carbon enrichment by austempering. Austempering was carried out at different temperatures and 400℃ was found to be optimal. Tensile strength, total elongation and strength-ductility balance reached the maximum values and the product of tensile strength and total elongation exceeded 30 135 MPa % when the TRIP steel was held at 400℃ and strained at 350℃.  相似文献   

13.
The effect of heat treatment on the mechanical properties of a high-nitrogen austenitic 02Kh20AG10N4MFB steel has been studied in the temperature region 550—1200°C. The yield strength and the ultimate tensile strength are shown to change nonmonotonically as a function of the heat treatment temperature. They sharply decrease in the annealing temperature range 850—900°C, which can demonstrate a change in the character of the structure–phase state of this steel. After annealing at 850—900°C, aging occurs with the precipitation of embrittling phases; at higher annealing temperatures, these particles dissolve and austenite recrystallizes. The study of the stress–strain diagrams makes it possible to find the laws of strain hardening of the 02Kh20AG10N4MFB steel as a function of the heat treatment temperature.  相似文献   

14.
With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson–Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.  相似文献   

15.
Austempered ductile iron (ADI) is a material that exhibits excellent mechanical properties because of its special microstructure, combining ferrite and austenite supersaturated with carbon. Two ADI alloys, Fe-3.5 pct C-2.5 pct Si and Fe-3.6 pct C-2.7 pct Si-0.7 pct Cu, austempered for various times at 623 K (350 °C) and 673 K (400 °C) followed by water quenching, were investigated. The first ferrite needles nucleate mainly at the graphite/austenite interface. The austenite and ferrite weight fractions increase with the austempering time until stabilization is reached. The increase in the lattice parameter of the austenite during austempering corresponds to an increase of carbon content in the austenite. The increase in the ferrite weight fraction is associated with a decrease in microhardness. As the austempering temperature increases, the ferrite weight fraction decreases, the high carbon austenite weight fraction increases, but the carbon content in the latter decreases. Copper addition increases the high carbon austenite weight fraction. The results are discussed based on the phases composing the Fe-2Si-C system.  相似文献   

16.
Dual phase steels are characterized by a microstructure consisting of ferrite, martensite, retained austenite, and/or lower bainite. This microstructure can be altered by tempering with accompanying changes in mechanical properties. This paper examines such changes produced in a vanadium bearing dual phase steel upon tempering below 500 °C. The steel mechanical properties were minimally affected on tempering below 200 °C; however, a simultaneous reduction in uniform elongation and tensile strength occurred upon tempering above 400 °C. The large amount of retained austenite (≅10 vol pct) observed in the as-received steel was found to be essentially stable to tempering below 300 °C. On tempering above 400 °C, most of the retained austenite decomposed to either upper bainite (at 400 °C) or a mixture of upper bainite and ferrite-carbide aggregate formed by an interphase precipitation mechanism (at 500 °C). In addition, tempering at 400 °C led to fine precipitation in the retained ferrite. The observed mechanical properties were correlated with these microstructural changes. It was concluded that the observed decrease in uniform elongation upon tempering above 400 °C is primarily the consequence of the decomposition of retained austenite and the resulting loss of transformation induced plasticity (TRIP) as a contributing mechanism to the strain hardening of the steel. B. V. N. RAO, formerly Senior Research Engineer, Analytical Chemistry Department, General Motors Research Laboratories  相似文献   

17.
Austempered ductile iron (ADI) is known to have a good combination of mechanical properties due its unique ausferrite microstructure. The strength of ADI is mainly a function of the austempering temperature and the stability of ausferrite matrix. To increase the stability of the ausferritic matrix, two stage austempering processes was developed. During this investigation, in the Ist step, ductile iron specimens were austenitized at 900 °C for 60 min followed by quenching to 250 °C in salt bath. In the IInd step, after quenching at 250 °C, the salt bath was gradually heated to 350 °C, 400 °C and 450 °C respectively where specimen were soaked for 120 min. The tensile strength and impact strength were evaluated according to ASTM standards. The results were compared with that obtained by conventional austempering process by quenching directly into salt bath at 400 °C for 120 min. Both tensile and impact strength were found to have improved by two step austempering process. During Ist stage of austempering, martensite was observed while during IInd stage of austempering microstructures revealed acicular ferrite and carbon stabilized austenite. The fractographic examination revealed mixed type of fracture mode and intergranular fracture was seen under SEM. It was further observed that the tensile strength decreased whereas the impact strength increased with IInd stage of austempering temperature.  相似文献   

18.
新型TRIP钢热处理工艺初探   总被引:1,自引:0,他引:1  
新型TRIP复相钢仅含C、Si、Mn等合金元素,采用临界区等温淬火热处理工艺,获得铁素体、贝氏体和残余奥氏体三相组织。该钢在Ms-Md温度之间菜变,应变诱导相变,相变诱发塑性(TRIP),其力学性能指标特别是伸长率大幅度提高。  相似文献   

19.
Ductile cast iron samples were austenitized at 927 °C and subsequently austempered for 30 minutes, 1 hour, and 2 hours at 260 °C, 288 °C, 316 °C, 343 °C, 371 °C, and 399 °C. These were subjected to a plane strain fracture toughness test. Fracture toughness was found to initially increase with austempering temperature, reach a maximum, and then decrease with further rise in temperature. The results of the fracture toughness study and fractographic examination were correlated with microstructural features such as bainite morphology, the volume fraction of retained austenite, and its carbon content. It was found that fracture toughness was maximized when the microstructure consisted of lower bainite with about 30 vol pct retained austenite containing more than 1.8 wt pct carbon. A theoretical model was developed, which could explain the observed variation in fracture toughness with austempering temperature in terms of microstructural features such as the width of the ferrite blades and retained austenite content. A plot of K IC 2 against σ y (X γ, C γ)1/2 resulted in a straight line, as predicted by the model.  相似文献   

20.
Selecting a suitable manufacturing process is one way of achieving sustainability of a product by diminishing energy consumption during its production cycle and improving material efficiency. The article attempts to explore the new processing technology for direct manufacturing of lightweight austempered ductile iron (ADI) casting in a permanent mold. The new processing technology is based on the innovative integrated approach toward casting and heat-treatment process. In this technology, the ductile iron samples obtained using the permanent mold are first austenized immediately after solidification process followed by austempering heat treatment in the fluidized bed and then air cooled at room temperature to obtain ADI material. The influence of austempering time on the microstructural characteristics, mechanical properties, and strain-hardening behavior of ADI was studied. Optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were performed to correlate the mechanical properties with microstructural characteristics. It was observed that the mechanical properties of resulting ADI samples were influenced by the microstructural transformations and varied retained austenite volume fractions obtained due to different austempering time. The results indicate that the strain-hardening behavior of the ADI material is influenced by the carbon content of retained austenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号