首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bimetallic MgO-supported catalysts were prepared by adsorption of Pt3Ru6(CO)213-H)(μ-H)3 on porous MgO. Characterization of the supported clusters by infrared (IR) spectroscopy showed that the adsorbed species were still in the form of metal carbonyls. The supported clusters were decarbonylated by treatment in flowing helium at 300 °C, as shown by IR and extended X-ray absorption fine structure (EXAFS) data, and the resulting supported PtRu clusters were shown by EXAFS spectroscopy to have metal frames that retained Pt–Ru bonds but were slightly restructured relative to those of the precursor; the average cluster size was almost unchanged as a result of the decarbonylation. These are among the smallest reported bimetallic clusters of group-8 metals. The decarbonylated sample catalyzed ethylene hydrogenation with an activity similar to that reported previously for γ-Al2O3-supported clusters prepared in nearly the same way and having nearly the same structure. Both samples were also active for n-butane hydrogenolysis, with the MgO-supported catalyst being more active than the γ-Al2O3-supported catalyst.  相似文献   

2.
Supported molybdenum clusters were prepared by sublimation of Mo(CO)6 onto dehy-droxylated alumina followed by decomposition in flowing dihydrogen at 970 K. These alumina-supported molybdenum clusters were found by XAFS to transform into Mo2C if heated in a 20% methane/H2 mixture at 950 K. For the hydrogenolysis ofn-butane at 510 K and CO-H2 reactions at 570 K, both at atmospheric pressure, molybdenum and carburized molybdenum showed similar, but different for each reaction, turnover rates. The product distribution was the same for each reaction on Mo and Mo2C. In both reactions, in situ XAFS data for fresh and used catalysts indicated that Mo clusters progressively transformed into Mo2C under the reaction conditions  相似文献   

3.
Reaction mechanism of skeletal isomerization of n-butane over sulfated zirconia (SZ), Cs2.5H0.5PW12O40 (Cs2.5) and H-form mordenite (H-MOR) catalysts was studied using 13C MAS NMR with 13C-labeled n-butane. The isomerization of n-butane over SZ type catalysts proceeds predominantly via a monomolecular mechanism below 333 K and gradually changes to a bimolecular alkylation-β-scission mechanism as the reaction temperature is increased to 423 K. Iron promoter in SZ catalyst facilitates the bimolecular process. The n-butane isomerization over Cs2.5 also proceeds mainly via a monomolecular mechanism below 373 K. The bimolecular mechanism becomes significant as the reaction temperature is increased to 423 K. On both SZ and Cs2.5 catalysts hydrogen inhibits the isomerization reaction, in particular the bimolecular process. In contrast, the n-butane isomerization over H-MOR with relatively moderate acid strength proceeds mainly via a bimolecular mechanism at 473 K. The kinetics of n-butane isomerization on SZ below 333 K and Cs2.5 below 373 K are well represented by the Langmuir–Hinshelwood equation for a reversible first order surface reaction, further supporting that a monomolecular mechanism proceeds primarily on SZ and Cs2.5 catalysts at early reaction stage. All results suggest that the stronger the acidity of the catalyst the lower the reaction temperature of n-butane isomerization and the more contribution of the monomolecular mechanism. The overall mechanism of 1−13C-n-butane reaction on SZ, Cs2.5 and H-MOR catalysts including 13C scrambling and butane isomerization is proposed.  相似文献   

4.
Guisnet  M.  Bichon  Ph.  Gnep  N.S.  Essayem  N. 《Topics in Catalysis》2000,11(1-4):247-254
Over H3PW12O40 and its acidic cesium salts at 250°C, alkane transformations occur through the mechanisms previously proposed for sulfated zirconia and mordenite catalysts: propane is mainly transformed into butanes through a trimerization–isomerization–cracking process, n-butane into isobutane, propane and pentanes through a dimerization–isomerization–cracking process, n-hexane into methylpentanes and 2,3-dimethylbutane through a monomolecular mechanism. With all the samples, n-butane transformation is initially much faster than propane transformation, the difference in rate increasing significantly with the Cs content: from 25 times with H3PW12O40 to 350 times with Cs2.4H0.6PW12O40. On the other hand, n-hexane transformation is 2.3 to 7 times faster than n-butane transformation. A decrease in acid strength and in acid site density with Cs introduction is proposed to explain the increase in the rate ratios. For all the reactions, sulfated zirconia pretreated at 600°C is 2–3 times more active than the heteropolycompounds. HMOR10 which is the most active catalyst for n-hexane transformation is the least active for n-butane and especially propane transformation. This very low activity of mordenite for these bimolecular processes can be related to particularities of its pore system: bimolecular reactions are strongly unfavoured in the narrow non-interconnected channels of this zeolite. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Separation of higher hydrocarbons from methane is an important and energy-intensive operation in natural gas processing. We present a detailed investigation of thin and oriented MFI zeolite membranes fabricated from 2D MFI nanosheets on inexpensive α-alumina hollow fiber supports, particularly for separation of n-butane, propane, and ethane (“natural gas liquids”) from methane. These membranes display high permeances and selectivities for C2–C4 hydrocarbons over methane, driven primarily by stronger adsorption of C2–C4 hydrocarbons. We study the separation characteristics under unary, binary, ternary, and quaternary mixture conditions at 298 K and 100–900 kPa feed pressures. The membranes are highly effective in quaternary mixture separation at elevated feed pressures, for example allowing n-butane/methane separation factors of 170–280 and n-butane permeances of 710–2,700 GPU over the feed pressure range. We parametrize and apply multicomponent Maxwell–Stefan transport equations to predict the main trends in separation behavior over a range of operating conditions.  相似文献   

6.
In situ transmission and fluorescence EXAFS combined with on-line gas analysis have provided new insight in the structural changes and the catalytic properties of Ir clusters during the catalytic partial oxidation (CPO) of methane. A novel in situ fluorescence XAFS setup with a multi element silicon drift detector allows time-resolved in situ studies on catalysts with small noble metal concentrations. Significant structural differences were found between a 0.5 wt% Ir/Al2O3 and a 2.5 wt% Ir/Al2O3 catalyst upon treatment in He and H2. After He treatment metallic clusters form on high loading Ir catalysts but not when the loading is small. Upon H2 treatment metallic Ir clusters are detected in both catalysts, but the particle size is smaller when a low loading is used. The smaller clusters appear to be more sensitive to oxidation. The CPO reaction is found to ignite at 320°C, nearly independent of the residence time and the Ir cluster size. The structure of the clusters changes significantly at the ignition point. Below the ignition point they are partly (2.5 wt% Ir) or nearly fully (0.5 wt% Ir) oxidized and above the ignition temperature they are abruptly reduced. The catalytic and structural changes are reversible.  相似文献   

7.
A structured catalyst: noble metal supported on a plate-type zirconia substrate was prepared by subjecting a zirconium plate to a process consisting of anodic oxidation in an oxalic acid bath and calcination in the air, followed by rhodium or ruthenium component deposition by the dipping treatment. The catalytic performances of the prepared catalysts were evaluated for steam reforming of n-butane and propane. The substrate surface was significantly corroded by the anodic oxidation and calcination, and a rugged zirconia layer about 100 μm thick was formed. The crystalline state of zirconia was mainly monoclinic and tetragonal. In steam reforming of n-butane, the structured ruthenium catalyst had some activity, while the activity of the rhodium catalyst exceeded that of the commercial catalyst. For the rhodium catalyst, its reforming activity was improved by changing the temperature of dipping bath and the number of dips for adjustment of the rhodium deposition state. The rhodium catalyst prepared by dipping twice at a bath temperature of 25 °C has the largest metal surface area and a higher metal dispersion, which were thought to be the causes for the high performance. In steam reforming of propane, the rhodium catalyst showed a significantly higher activity than the commercial catalyst. The rhodium catalyst was less prone to deterioration of activity due to n-butane and propane reforming.  相似文献   

8.
Development in highly active catalysts for the reforming of methane with CO2 and partial oxidation of methane was conducted to produce hydrogen and carbon monoxide with high reaction rates. An Ni-based four-components catalyst, Ni-Ce2O3-Pt-Rh, supported on an alumina wash-coated ceramic fiber in a plate shape was suitable for the objective reaction. By combining the catalytic combustion of ethane or propane, methane conversion was markedly enhanced, and a high space-time yield of syngas, 25,000 mol/l·h was obtained at a catalyst temperature of 700 ‡C or furnace temperature of 500 ‡C. The extraordinary high space-time yield of syngas was also confirmed even under the very rapid flow rate conditions as a contact time of 3 m-sec by using a monolithic shape of catalyst bed without back pressure.  相似文献   

9.
Indirect partial oxidation (IPOX) of a 75:25 propane:n-butane mixture, which was used as a model for LPG, was studied over the bimetallic 0.2 wt%Pt–15 wt%Ni/δ-Al2O3 catalyst in 623–743 K temperature range. The effects of steam to carbon ratio (S/C), carbon to oxygen ratio(C/O2) and residence time (W/F (g cat-h/mol LPG)) on the hydrogen production activity, selectivity and product distribution were studied in detail. The results are compared with the results obtained in the IPOX of pure propane. An Increasing Temperature Program (ITP) was applied during all experiments and the results showed that the presence of n-butane in the feed enhances hydrogen production activity and selectivity. Considering the well established distribution network of LPG and the superior performance of the bimetallic Pt–Ni catalyst in the IPOX of LPG, Pt–Ni system seems a very promising catalyst alternative to be used in commercial fuel processors.  相似文献   

10.
Ga-promoted tungstated zirconia (GWZ) was prepared by a slurry impregnation method. The textural properties as well as the acidities of the Ga-promoted catalysts were characterized by X-ray powder diffraction (XRD), N2 adsorption, NH3 temperature-programmed desorption (NH3 TPD), microcalorimetry and H2 temperature-programmed reduction (H2 TPR). The catalytic behavior of GWZ for n-butane isomerization was studied in the presence of hydrogen. In comparison to tungstated zirconia (WZ), the catalytic activity of the Ga-promoted catalyst was greatly improved. The reason proposed for the higher activity of the Ga-promoted catalysts was that Ga enhances the oxidizing ability of the catalysts.  相似文献   

11.
The catalytic properties of undoped and K-doped (K/V atomic ratio of 0.5) Al2O3-supported vanadia catalysts (4.5 wt% of V2O5) for the oxidation ofn-butane and ethane were studied. Isolated tetrahedral V5+ species are mainly observed in both undoped and K-doped samples. The incorporation of potassium decreases both the reducibility of surface vanadium species and the number of surface acid sites. Potassium-free vanadium catalysts show a high selectivity during the oxidative dehydrogenation (ODH) of ethane but a low selectivity during the ODH ofn-butane. However, the presence of potassium on the vanadium catalysts strongly influences their catalytic properties, increasing the selectivity to C4-olefins fromn-butane and decreasing the selectivity to ethene from ethane. The role of the acid-base characteristics of catalysts on selectivity to ODH reactions is proposed.On leave from the Department of Industrial Chemistry and Materials, V. le Risorgimento 4, 40136 Bologna, Italy.  相似文献   

12.
Catalytic oxidation of propane to produce propene was investigated over molybdenum-based mixed oxide catalysts. Cobalt or magnesium oxide combined with molybdenum oxide exhibits the best catalytic performance for the oxidative dehydrogenation of propane. Catalytic activities of both Co-Mo-O and Mg-Mo-O vary drastically on the catalyst composition and Co(Mg)0.95Mo1.0Ox having small amounts of free MoO3 on the Co(Mg)MoO4 surface shows the highest catalytic activity keeping a considerably high selectivity to propene. The catalytic activity also depends strongly on the acidic properties of catalysts and MoO3 clusters formed on the surface of Co(Mg)MoO4 are responsible for the activities for the oxidative dehydrogenation of propane.  相似文献   

13.
The comparative study of catalytic performance of V-containing high-surface mesoporous siliceous materials (HMS, SBA-16, SBA-15 and MCM-48) in oxidative dehydrogenation of propane and n-butane (C3-ODH and C4-ODH, respectively) was carried out. The aim of study was to investigate effect of silica support texture on the speciation of vanadium complexes and its impact on catalytic behavior in both above mentioned reactions is reported. Prepared catalysts were characterized by XRF for determination of vanadium content, XRD, SEM and N2-adsorption for study of morphology and texture, and H2-TPR and DR UV-vis spectroscopy for determination of vanadium complex speciation. All prepared materials were tested in propane and n-butane ODH reaction at 540 °C and obtained catalytic results were correlated with their structural and surface characteristics. On the basis of obtained data we conclude that the structure of mesoporous silica support plays decisive role in the case of application of catalysts in n-butane ODH reaction, whereas catalytic performance of investigated catalysts in propane ODH reaction is comparable for all investigated structures. Catalytic performance of investigated materials in C3-ODH and C4-ODH can be correlated with population of all tetrahedrally coordinated VOx complexes and only isolated monomeric VOx complexes, respectively.  相似文献   

14.
The oxidation of n-butane to maleic anhydride was investigated over model Nb‐, Si‐, Ti‐, V‐, and Zr‐promoted bulk VPO and supported vanadia catalysts. The promoters were concentrated in the surface region of the bulk VPO catalysts. For the supported vanadia catalysts, the vanadia phase was present as a two‐dimensional metal oxide overlayer on the different oxide supports (TiO2, ZrO2, Nb2O5, Al2O3, and SiO2). No correlation was found between the electronegativity of the promoter or oxide support cation and the catalytic properties of these two catalytic systems. The maleic anhydride selectivity correlated with the Lewis acidity of the promoter cations and oxide supports. Both promoted bulk VPO and supported vanadia catalysts containing surface niobia species were the most active and selective to maleic anhydride. These findings suggest that the activation of n-butane on both the bulk and supported vanadia catalysts probably requires both surface redox and acid sites, and that the acidity also plays an important role in controlling further kinetic steps of n-butane oxidation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
This work investigated reducibility of cobalt species in monometallic Co/NaY and bimetallic CoPt/NaY catalysts with various Co loading (1, 6 and 10 wt.%) and fixed Pt loading (1 wt.%). The form and environment of Co species after reduction was determined by X-ray absorption spectroscopy including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The cobalt species in the mono- and bimetallic catalyst with Co loading of 1 wt.% was not reducible whereas those with Co loading of 6 and 10 wt.% were partially reduced. The extent of reduction increased with Co loading and enhanced by the presence of Pt. Catalytic performance for n-butane hydrogenolysis mono- and bimetallic catalysts were compared. The higher extent of Co reduction in 6CoPt/NaY and 10CoPt/NaY resulted in higher conversions than the monometallic counterpart. Sequential hydrogenolysis was favored on the monometallic catalysts because methane was the only product. The presence of Pt suppressed such reaction resulting in ethane and propane. The effect of Pt on such effect was most prominent in 6CoPt/NaY.  相似文献   

16.
Chemisorption of propene and propane was studied in a pulse reactor over a series of cobalt silica-supported Fischer–Tropsch catalysts. It was shown that interaction of propene with cobalt metal particles resulted in its rapid autohydrogenation. The reaction consists in a part of the propene being dehydrogenated to surface carbon and CHx chemisorbed species; hydrogen atoms released in the course of propene dehydrogenation are then involved in hydrogenation of remaining propene molecules to propane at 323–423 K or in propene hydrogenolysis to methane and ethane at temperatures higher than 423 K. The catalyst characterization suggests that propene chemisorption over cobalt catalysts is primarily a function of the density of cobalt surface metal sites. A correlation between propene chemisorption and Fischer–Tropsch reaction rate was observed over a series of cobalt silica-supported catalysts. No propane chemisorption was observed at 323–373 K over cobalt silica-supported catalysts. Propane autohydrogenolysis was found to proceed at higher temperatures, with methane being the major product of this reaction over cobalt catalysts. Hydrogen for propane autohydrogenolysis is probably provided by adsorbed CHx species formed via propane dehydrogenation. Propene and propane chemisorption is dramatically reduced upon the catalyst exposure to synthesis gas (H2/CO = 2) at 323–473 K. Our results suggest that cobalt metal particles are probably completely covered by carbon monoxide molecules under the conditions similar to Fischer–Tropsch synthesis and thus, most of cobalt surface sites are not available for propene and propane chemisorption.  相似文献   

17.
Similarly to the case of methane, ethane and propane, Mo2C deposited on ZSM-5 significantly enhanced the aromatization of n-butane observed on ZSM-5 (SiO2/Al2O3 ratio of 80) alone. The catalytic performance of Mo2C/ZSM-5 sensitively depended on its preparation and pretreatment. The selectivity of aromatics measured for pure ZSM-5 increased from 11-13% to 28-34% at the conversion level of 60-65%. The formation of aromatics was also observed over Mo2C/SiO2.  相似文献   

18.
Vanadium phosphorous oxide (VPO) catalyst was prepared using dihydrate method and tested for the potential use in selective oxidation of n-butane to maleic anhydride. The catalysts were doped by La, Ce and combined components Ce + Co and Ce + Bi through impregnation. The effect of promoters on catalyst morphology and the development of acid and redox sites were studied through XRD, BET, SEM, H2-TPR and TPRn reaction of n-butane/He. Addition of rare-earth element to VPO formulation and drying of catalyst precursor by microwave irradiation increased the fall width at half maximum (FWHM) and reduced the crystallite size of the Vanadyl hydrogen phosphate hemihydrate (VOHPO4 · 1/2 H2O, VHP) precursor phase and thus led to the production of final catalysts with larger surface area. The Ce doped VPO catalyst which, assisted by the microwave heating method, exhibited the highest surface area. Moreover, the addition of promoters significantly increased catalyst activity and selectivity as compared to undoped VPO catalyst in the oxidation reaction of n-butane. The H2-TPR and TPRn reaction profiles showed that the highest amount of active oxygen species, i.e., the V4+–O? pair, was removed from the bimetallic (Ce + Bi) promoted catalyst. This pair is responsible for n-butane activation. Furthermore, based on catalytic test results, it was demonstrated that the catalyst promoted with Ce and Bi (VPOD1) was the most active and selective catalyst among the produced catalysts with 52% reaction yield. This suggests that the rare earth metal promoted vanadium phosphate catalyst is a promising method to improve the catalytic properties of VPO for the partial oxidation of n-butane to maleic anhydride.  相似文献   

19.
The present work addresses the influence of microwave irradiation on undoped and doped vanadium phosphate catalysts. These catalysts were prepared via VOPO4 · 2H2O. The catalyst’s precursors‚ VOHPO4 · 0.5H2O were subjected to microwave irradiation and comparison was made with the conventional heating. The interaction of these complex materials with microwave and the addition of several doponts (Nb, Bi, Co, Mo) provide interesting improvements in catalyst preparation found to be a faster, develop higher surface area, higher activity and selectivity for the oxidation of n-butane to maleic anhydride. All the catalysts were characterized by using a combination of powder XRD, H2-TPR, BET surface area and SEM.  相似文献   

20.
The nature and the role of oxygen species and vanadium oxidation states on the activation of n-butane for selective oxidation to maleic anhydride were investigated. Bi–Fe doped and undoped vanadium phosphate catalysts were used a model catalyst. XRD revealed that Bi–Fe mixture dopants led to formation of αII-VOPO4 phase together with (VO)2P2O7 as a dominant phase when the materials were heated in n-butane/air to form the final catalysts. TPR analysis showed that the reduction behaviour of Bi–Fe doped catalysts was dominated by the reduction peak assigned to the reduction of V5+ species as compared to the undoped catalyst, which gave the reduction of V4+ as the major feature. An excess of the oxygen species (O2?) associated with V5+ in Bi–Fe doped catalysts improved the maleic anhydride selectivity but significantly lowering the rate of n-butane conversion. The reactive pairing of V4+-O? was shown to be the centre for n-butane activation. It is proposed that the availability and appearance of active oxygen species (O?) on the surface of vanadium phosphate catalyst is the rate determining step of the overall reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号