首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented for computing far-field antenna patterns from measured near-field data measured by an array of planar dipole probes. The method utilizes the near-field data to determine some equivalent magnetic current sources over a fictitious planar surface which encompasses the antenna. These currents are then used to find the far fields. The near-field measurement is carried out by terminating each dipole with 50 Ω load impedances and measuring the complex voltages across the loads. An electric field integral equation (EFIE) is developed to relate the measured complex voltages to the equivalent magnetic currents. The mutual coupling between the array of probes and the test antenna modeled by magnetic dipoles is taken into account. The method of moments with Galerkin's type solution procedure is used to transform the integral equation into a matrix one. The matrix equation is solved with the conjugate gradient-fast Fourier transformation (CG-FFT) method exploiting the block Toeplitz structure of the matrix. Numerical results are presented for several antenna configurations to show the validity of the method  相似文献   

2.
Presented here is a method for computing near- and far-field patterns of an antenna from its near-field measurements taken over an arbitrarily shaped geometry. This method utilizes near-field data to determine an equivalent electric current source over a fictitious surface which encompasses the antenna. This electric current, once determined, can be used to ascertain the near and the far field. This method demonstrates the concept of analytic continuity, i.e., once the value of the electric field is known for one region in space, from a theoretical perspective, its value for any other region can be extrapolated. It is shown that the equivalent electric current produces the correct fields in the regions in front of the antenna regardless of the geometry over which the near-field measurements are made. In this approach, the measured data need not satisfy the Nyquist sampling criteria. An electric field integral equation is developed to relate the near field to the equivalent electric current. A moment method procedure is employed to solve the integral equation by transforming it into a matrix equation. A least-squares solution via singular value decomposition is used to solve the matrix equation. Computations with both synthetic and experimental data, where the near field of several antenna configurations are measured over various geometrical surfaces, illustrate the accuracy of this method  相似文献   

3.
Antenna far-fields from planar acquisition using micro-genetic algorithms   总被引:1,自引:0,他引:1  
A method for modelling the radiation of an antenna under test from planar near-field data using equivalent magnetic currents (EMC) is presented. Micro-genetic algorithms are used to optimise each component of the EMC. Numerical results of near-field to far-field transformation are reported and discussed.  相似文献   

4.
This paper presents a new approach to derive far-field data needed in antenna and EMI/EMC testing from near-field measurements. An exact integral equation solution to the wave propagation problem is used to transform the near-field data to the far field. The method requires near-field measurements on two closed surfaces enclosing all sources and inhomogeneities. The approach is validated with numerical simulation of measurements of fields radiated from a known antenna  相似文献   

5.
A near-field to far-field (NF-FF) transformation is addressed for the case of spherical scanning using equivalent magnetic currents (EMCs) and matrix methods. It is based on the decoupling of the field components and the iterative retrieval of the radial component of the electric field. The technique is applied for far-field calculation as well as for the estimation of the current distribution of the antenna under test (AUT) using spherical near-field facilities. Results from measured near-field data of several antennas are presented and compared to those of the analytical solution via a spherical wave mode expansion method  相似文献   

6.
The main plane far-field radiation pattern of an antenna under test from the corresponding main plane near-field data, using a circular-line acquisition, is presented. The method is based on the reconstruction of equivalent magnetic currents (EMCs) using decoupled integral equations and one-dimensional source components. The resultant fast procedure is applicable to linear and quasilinear array antennas. Experimental data results and comparison with complete spherical acquisition and center-line acquisition are presented  相似文献   

7.
A full-wave analysis of cavity-backed aperture antennas with a dielectric overlay is presented. The theoretical approach uses a closed-form dyadic Green's function in the spectral domain. The aperture equivalent magnetic currents are obtained using the surface equivalence theorem and an integral equation is obtained by matching the fields across the aperture. The moment method applied in spectral domain analysis is employed to solve the integral equation for the equivalent magnetic currents with proper combination of subdomain or entire domain expansion functions. Numerical results include the aperture field distribution and antenna parameters such as input impedance, bandwidth, and efficiency. A set of measurements data is compared with results based on the theoretical work  相似文献   

8.
It is well-known that the far field of an arbitrary antenna may be calculated from near-field measurements. Among various possible nearfield scan geometries, the planar configuration has attracted considerable attention. In the past the planar configuration has been used with a probe scanning a rectangular geometry in the near field, and computation of the far field has been made with a two-dimensional fast Fourier transform (FFT). The applicability of the planar configuration with a probe scanning a polar geometry is investigated. The measurement process is represented as a convolution derivable from the reciprocity theorem. The concept of probe compensation as a deconvolution is then discussed with numerical results presented to verify the accuracy of the method. The far field is constructed using the Jacobi-Bessel series expansion and its utility relative to the FFT in polar geometry is examined. Finally, the far-field pattern of the Viking high gain antenna is constructed from the plane-polar near-field measured data and compared with the previously measured far-field pattern. Some unique mechanical and electrical advantages of the plane-polar configuration for determining the far-field pattern of large and gravitationally sensitive space antennas are discussed. The time convention exp (j omega r) is used but is suppressed in the formulations.  相似文献   

9.
Certain unique features of a recently constructed plane-polar near-field measurement facility for determining the far-field patterns of large and fragile spaceborne antennas are described. In this facility, the horizontally positioned antenna rotates about its axis while the measuring probe is advanced incrementally in a fixed radial direction. The near-field measured data is then processed using a Jacobi-Bessel expansion to obtain the antenna far fields. A summary of the measurement and computational steps is given. Comparisons between the outdoor far-field measurements and the constructed far-field patterns from the near-field measured data are provided for different antenna sizes and frequencies. Application of the substitution method for the absolute gain measurement is discussed. In particular, results are shown for the 4.8-m mesh-deployable high-gain antenna of the Galileo spacecraft which has the mission of orbiting Jupiter in 1988.  相似文献   

10.
A near-field to far-field transformation based on the antenna representation by equivalent magnetic current (EMC) sources has been proposed and validated experimentally on large high-directivity antenna arrays. In this paper, the use of EMC is extended to the diagnostics of low-directivity printed antennas. The limitation of the near-field to far-field transformation applied to EMC models of low-directivity antennas, caused by the finite dimensions of the antenna ground plane, is demonstrated. A method to partially overcome this limitation by including the contribution of diffracted rays is implemented, and its effectiveness is demonstrated with antenna prototypes. It is shown that the agreement between the far-field patterns measured in an anechoic chamber and the patterns computed from the EMC model obtained from the near-field measurements is significantly improved upon, within a sector of ±90° with respect to the antenna boresight in the E plane. The influence of the near-field sampling density and topology of the EMC model on the accuracy of the predicted far-field pattern is examined  相似文献   

11.
This paper investigates linear spiral sampling for bipolar planar near-field antenna measurements. This sampling scheme is, depending on range implementation, the most rapid polar near-filed data acquisition mode. The near-field to far-field transformation is performed using a modified optimal sampling interpolation (OSI)/fast Fourier transform (FFT) approach. Measured far-field pattern results for a waveguide-fed slot array antenna are presented and are shown to have excellent agreement with results obtained from a conventional bipolar measurement  相似文献   

12.
13.
A new technique of synthesis of near-field (NF) amplitude and phase patterns of linear, planar, of volume arrays of finite size or arrays located on a planar contour of finite size is presented. The array could consist of point dipoles or directive elements. The criterion for prescribing the NF (amplitude and phase) pattern information in the synthesis problem for unique determination of array excitation currents is also stated. The proposed near-field synthesis technique is based on the potential integral solution of source currents, Nyquist sampling of the near-field data and the technique of linear least square approximation (LLSA). The NF pattern synthesis technique is illustrated to synthesize a variety of NF patterns with a number of array configurations. Application of the proposed NF pattern synthesis technique to minimize distortion in far-field patterns of arrays mounted on a conducting platform and to realize array antennas with low sidelobes in the near and far field is also presented.  相似文献   

14.
Generally, the calculation of antenna far-field patterns from known near-field distributions is tedious and may require the use of a large computer. The calculations are simplified for certain types of antennas having separable near fields. This simplifying assumption is found to yield satisfactory results with pyramidal horns and parabolic reflector antennas. Calculations are further simplified by approximating a complex line integral with two real summations. Measured and calculated far-field patterns are included to indicate the accuracy of the calculations. Results are presented for horns and parabolic antennas and for a horn covered with a hollow dielectric wedge. The method is applicable to both E-plane and H-plane pattern calculations. The main lobe of a far-field pattern is calculated in less than one hour on a desk calculating machine by the simplified method. In radome work an important feature is that it permits rapid evaluation of the far-field distortion associated with any given near-field distortion in any given small region in the near field.  相似文献   

15.
A theory for analyzing the behavior of adaptive phased array antennas illuminated by a near-field interference test source is presented. Conventional phased array near-field focusing is used to produce an equivalent far-field antenna pattern at a range distance of one to two aperture diameters from the adaptive antenna under test. The antenna is assumed to be a linear array of isotropic receive elements. The interferer is assumed to be a bandlimited noise source radiating from an isotropic antenna. The theory is developed for both partially and fully adaptive arrays. Results are presented for the fully adaptive array case with single and multiple interferers. The results indicate that near-field and far-field adaptive nulling can be equivalent. The adaptive nulling characteristics studied in detail are the array radiation patterns, adaptive cancellation, covariance matrix eigenvalues, and adaptive array weights  相似文献   

16.
A technique for the determination of the equivalent currents distribution from a known radiated field is described. This Inverse Radiation Problem is solved through an Integral Equation algorithm that allows the characterization of antennas of complex geometry both for near field to far field (NF-FF) transformation purposes as well as for diagnostic tasks. The algorithm is based on the representation of the radiating structure by means of a set of equivalent currents over a three-dimensional (3D) surface that can be fitted to the arbitrary geometry of the antenna. The innovative formulation uses an integral equation involving the electric field due to the currents tangential components to the represented antenna 3D surface. For that purpose, both the magnetic and electric equivalent currents are considered in the integral equations. Regularization techniques are also introduced to improve the convergence of the proposed iterative solution. The paper concludes with several results related to the practical verification of the Equivalence Principle and the characterization of a horn antenna.  相似文献   

17.
Probe-corrected planar near-field formulas in the time domain are derived for both acoustic and electromagnetic fields, so that a single set of near-field measurements in the time domain yields the fields of the test antenna directly in the time domain. The time-domain probe-corrected formulas are first derived by taking the inverse Fourier transform-of the corresponding frequency-domain formulas, and then by using a time-domain expansion for the fields of the test antenna and a time-domain receiving characteristic of the probe. Because these general formulas, which involve a double integral over the scan plane and an infinite time-convolution integral, are rather complicated, we consider a special probe whose output due to an incoming time domain plane wave is proportional to the time derivative of the field of that plane wave. For this special “D-dot probe”, the probe-corrected formulas simplify to give the time-domain far-held pattern as a double spatial integral of the time-domain output of the probe over the scan plane multiplied by the angular dependence of the inverse receiving characteristic of the probe. Time-domain reciprocity relations are derived for reciprocal probes, and their time-domain receiving characteristics are related to their far fields. Finally, a time-domain sampling theorem is derived and a numerical example illustrates the use of the time-domain probe-corrected formulas  相似文献   

18.
A comprehensive experimental and theoretical study for the determination of the electric near-field above planar resonators is presented. The transverse component of the electric field is mapped by external electro-optic (EO) sampling technique with high spatial and temporal resolution. The evolution of the near-field radiation pattern of the investigated 7-GHz planar resonator to the onset of the far-field pattern is traced by measurements at various heights above the sample. Frequency-dependent measurements allow to characterize the field pattern changes when the frequency is swept through the main resonance. Additional undesired resonances are identified by the detected mode pattern. The experimental data are reproduced by simulations based upon an electric field integral equation (EFIE) method  相似文献   

19.
Antenna near-field measurements typically require very accurate measurement of the near-field phase. There are applications where an accurate phase measurement may not be practically achievable. Phaseless measurements are beginning to emerge as an alternative microwave antenna measurements technique when phase cannot be directly measured. There are many important aspects for successful implementation of a phaseless measurement algorithm. This paper presents appropriate phaseless measurement requirements and a phase retrieval algorithm tailored for the bi-polar planar near-field antenna measurement technique. Two amplitude measurements and a squared amplitude optimal sampling interpolation method are integrated with an iterative Fourier procedure to first retrieve the phase information and then construct both the far-field pattern and diagnostic characteristics of the antenna under test. In order to critically examine the methodologies developed in this paper, phaseless measurement results for two different array antennas are presented and compared to results obtained when the near-field amplitude and phase are directly measured  相似文献   

20.
It becomes increasingly difficult to obtain far-field measurements for large millimetre wave antennas at higher frequencies due to the required large distance between the antennas. A hologram compact antenna test range (CATR) is used to determine the radiation characteristics of a 39 GHz planar antenna in a small facility. The results are compared with those obtained from planar near-field scanning and conventional far-field measurements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号