首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
针对具有迟滞和蠕变特性的压电作动器非线性模型,提出了一种前馈控制和反馈控制相结合的自适应模糊逆控制方案。在前馈控制器中压电作动器的迟滞和蠕变非线性特性的逆模型由自适应模糊逻辑系统近似;在反馈控制器中比例控制器用来调节压电作动器的输出误差。该方法可以实时补偿压电作动器的迟滞和蠕变特性,减少作动器跟踪误差。仿真计算结果表明了该方法的有效性。  相似文献   

2.
张泉  尹达一  张茜丹 《光学精密工程》2018,26(11):2744-2753
为提高空间天文望远镜稳像系统中压电快摆镜(Fast Steering Mirror,FSM)的动态性能,对压电执行器(Piezoelectric Actuator,PZT)动态迟滞补偿和控制进行研究。鉴于基于广义Play算子Prandtl-Ishlinskii(PI)模型的求逆复杂性和迟滞曲线的非对称性,构造一种基于广义Stop算子PI逆模型来补偿压电执行器迟滞非线性。采用Hammerstein模型对压电执行器动态迟滞特性进行建模,以广义PI模型和自回归遍历模型(Auto-regressive Exogenous Model,ARX)分别表征Hammerstein迟滞模型中的静态非线性和率相关性,并针对迟滞率相关模型不确定性问题,提出一种前馈补偿和线性二次型Gauss最优控制算法(Linear Quadratic Gaussian,LQG)相结合的复合控制策略。利用自适应差分进化算法(Adaptive Differential Evolution algorithm,ADE)辨识和整定模型及控制器参数。实验结果表明:该动态迟滞模型能够有效描述1~100Hz频率范围内压电执行器迟滞曲线,拟合均方根误差为0.077 1μm(@1 Hz)~0.512 3μm(@100Hz),相对误差为0.31%(@1Hz)~2.09%(@100Hz);实时跟踪幅值为24.5μm的变频目标位移,LQG控制算法的跟踪精度相比于直接前馈控制和PID控制分别提高48.6%和27.02%。  相似文献   

3.
This paper presents a novel real-time inverse hysteresis compensation method for piezoelectric actuators exhibiting asymmetric hysteresis effect. The proposed method directly utilizes a modified Prandtl-Ishlinskii hysteresis model to characterize the inverse hysteresis effect of piezoelectric actuators. The hysteresis model is then cascaded in the feedforward path for hysteresis cancellation. It avoids the complex and difficult mathematical procedure for constructing an inversion of the hysteresis model. For the purpose of validation, an experimental platform is established. To identify the model parameters, an adaptive particle swarm optimization algorithm is adopted. Based on the identified model parameters, a real-time feedforward controller is implemented for fast hysteresis compensation. Finally, tests are conducted with various kinds of trajectories. The experimental results show that the tracking errors caused by the hysteresis effect are reduced by about 90%, which clearly demonstrates the effectiveness of the proposed inverse compensation method with the modified Prandtl-Ishlinskii model.  相似文献   

4.
郝瑞  彭倍  周吴 《中国机械工程》2021,32(17):2118-2124
微机电系统(MEMS)压电振动台作为加速度传感器现场标定平台的新秀,能够提供片上物理驱动环境,为加速度传感器的快速重新标定提供持续稳定的加速度信号,然而用于压电振动台驱动的压电材料具有明显的迟滞特性,严重影响平台振动信号的稳定性和连续性。基于上述振动台振动特性,建立基于多项式拟合的压电迟滞模型,采用前馈控制和反馈控制相结合的复合控制方法对压电振动台进行控制和加速度滞后补偿。实验结果表明,在10 V(317 Hz)正弦电压激励下,MEMS压电振动台提供的简谐振动信号的加速度最大误差从1.3g降到了0.05g。  相似文献   

5.
This paper utilizes the field programmable gate array (FPGA) and Nios II embedded processor technologies to design a controller IC for a micro-positioning Scott-Russell (SR) mechanism, which is driven by a piezoelectric actuator (PA) and its hysteresis phenomenon is described by Bouc-Wen hysteresis model. For the controller design, the adaptive backstepping fuzzy control (ABFC) method is developed to compensate the PA's hysteresis and achieve the motion tracking control. The fuzzy logic method (FLM) is utilized to find the best adaptation gain of the adaptation law and control gain of the stabilization controls. This ABFC controller method can improve the transient and asymptotic tracking performances, and make the SR mechanism keep good working performance when external disturbances is added in the control system. Finally, we successfully apply the system-on-a-programmable-chip (SoPC) technologies to develop the motion controller IC, and achieve the advantages of reduced space, high performance and low cost.  相似文献   

6.
提出了逆Bouc-Wen前馈控制与反馈控制相结合的复合控制算法,用于改善压电陶瓷驱动器对目标轨迹的跟踪性能。建立了压电陶瓷驱动器的Bouc-Wen迟滞动力学模型,并用粒子群算法(PSO)对该模型的参数进行识别。基于Bouc-Wen迟滞模型,提出了逆Bouc-Wen前馈补偿控制。最后,为消除迟滞模型的不确定性,引入比例积分(PI)反馈控制,并与前馈补偿控制构成复合控制算法。建立了基于dSPACE实时系统的压电陶瓷驱动实验平台,迟滞实验结果表明:压电陶瓷的迟滞误差量几乎为0,线性度高达96.5%;目标轨迹跟踪实验结果表明:复合控制算法的最大跟踪误差为0.180 5μm,均方根(RMS-Root mean square)跟踪误差为0.055 4μm,跟踪精度达到了10-8 m。相比于开环控制、前馈控制及PI反馈控制,提出的复合控制算法能够基本消除压电陶瓷的迟滞非线性,同时具有很好的轨迹跟踪性能。  相似文献   

7.
后屈曲预压缩压电双晶片(Post-buckling pre-compression,PBP)驱动器作为一种大行程压电舵机驱动器,存在着严重的率相关迟滞现象。为了使PBP驱动器能够作为具有较高控制精度的微小型飞行器舵机驱动器,利用基于Bouc-Wen模型的Hammerstein率相关迟滞模型对其进行参数识别,并通过试验验证了该模型能够较好地预测PBP驱动器的率相关迟滞特性;在此基础上为PBP驱动器设计一种具有在线自适应能力的前馈单神经元PID复合线性化控制器,在多种单复合频率信号作用下对其控制回路进行位移跟踪半实物仿真试验,并与基于径向基函数(Radial basis function,RBF)神经网络PID控制器进行对比,结果表明前馈单神经元PID控制器具有更快的响应速度和更高的控制精度。  相似文献   

8.
This article presents a supervisory hybrid control design for piezoelectric actuators utilized in tracking trajectories with intermittent jump discontinuities. We use a previously developed robust adaptive controller and a standard PID controller to construct this hybrid control strategy. We show that when the sub-controllers are used for step tracking, while primarily tuned for continuous trajectory tracking, large undesirable oscillations occur. Conversely, when the controllers are retuned for step tracking, their performance degrades in tracking high-frequency continuous trajectories. Thus, a supervisory hybrid controller is developed to track desired trajectories with occasional discontinuities, using both the robust adaptive and the PID controllers. The robust adaptive controller performs as the primary controller for tracking the continuous segments of the desired trajectory, while the PID controller is activated when the steps occur. Results indicate that the proposed supervisory hybrid controller outperforms both sub-controllers in tracking high-frequency trajectories with intermittent discontinuities.  相似文献   

9.
This paper proposes the control and dynamic releasing method of a symmetric microgripper with integrated position sensing. The microgripper adopted in this micromanipulation system is constructed by two L-shaped leverage mechanisms and the fingers of the microgripper is machined much thinner than the gripper body. A combined feedforward/feedback position controller is established to improve the motion accuracy of the microgripper in high frequency. The feedforward controller is established based on rate-dependent inverse Prandtl-Ishlinskii (P–I) hysteresis model. The inertial force generated in dynamic based releasing process is analyzed through MATLAB simulation. Open-loop experimental tests have been performed, and the results indicate the first natural frequency of the microgripper is 730 Hz. Then experiments in high frequency based on the developed combined controller are carried out and the results show the tracking error of a superimposed sinusoidal trajectory with the frequency of 100 Hz, 120 Hz and 130 Hz is 6.4%. Finally, the tiny objects releasing experiments are conducted where the combined controller is used to control the motion amplitude and frequency to achieve inertial force controllable to improve operation accuracy. And the results show that the dynamic releasing strategy is effective.  相似文献   

10.
为实现高速开关阀控气动位置伺服系统的精确控制,以4个高速开关阀控制气缸的结构作为研究对象,提出一种模糊自适应PID算法以提高其控制精度.介绍了系统的结构与工作原理,并在此基础上建立系统数学模型.针对常规PID控制器难以适应多工况位置跟踪的问题,利用模糊控制原理对PID控制器的参数进行在线调整,以满足系统控制过程中对于参...  相似文献   

11.
Controller design consists of a feedforward and a feedback controller to support a microstage with flexure hinge structure driven by piezoelectric ceramic actuator for high-frequency nanoscale cutting is developed in this article. The feedforward controller is designed based on a hysteresis dynamic model in order to reduce the nonlinear hysteresis effect of piezoelectric actuator. The position feedback controller is designed based upon an exponentially weighted moving average (EWMA) method embedded in an internal model control (IMC) structure constructing a run-to-run IMC (RtR-IMC) control scheme in order to deal with system bias or modeling inaccuracy. Also, disturbance due to temperature rise will influence actuator's performance, hence an additional compensator is included in the IMC structure. Surfaces dimple micro-machining utilizes piezoelectric-driven microstage for high-speed cutting is selected as an example to investigate system performance. The developed control algorithm is implemented on a DSP-based system to provide 1 kHz operating speed. In experiment, the proposed feedforward and feedback controller is verified to be able to overcome those negative factors efficiently and preserve good positioning accuracy.  相似文献   

12.
针对压电陶瓷驱动器(PZT)的迟滞非线性对周期性超精密跟踪精度的影响,对基于Takagi-Sugeno(T-S)型模糊规则的动态模糊系统( DFS)前馈+PI控制方法进行了研究。介绍了DFS模型前提部分和结论部分的辨识方法; 结合直接逆模型控制和迭代学习控制的思想,提出了周期性轨迹跟踪的DFS前馈+PI控制方法。最后,针对20 Hz的三角波和正弦波期望轨迹进行了跟踪控制实验。实验结果表明:提出的控制方法对三角波和正弦波期望轨迹的最大跟踪误差分别为0.25%和0.27%,相对于PI控制,跟踪精度分别提高了52倍和64倍,而最大跟踪绝对误差分别降低到5.1 nm和5.5 nm。结果显示这种控制方法易于实现,周期性轨迹跟踪精度高。  相似文献   

13.
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller  相似文献   

14.
This paper proposes a hybrid control strategy of a novel linear piezoelectric walking stage based on two sorts of piezoelectric actuators, which takes the load variation into account. The proposed stage consists of two parallel 4-bar lever amplification mechanisms with flexure hinges actuated by piezoelectric stacks to heighten the vertical distance (that is more tolerable to the assembly discrepancy), two compression springs (that is able to maintain a fixed linear position without powering), and two shear piezoelectric actuators (that can achieve longer and equivalent to walking motion) in a small form factor. The proposed stage has two operating modes, namely a coarse positioning mode with a more extensive travel range and a fine positioning mode with a nanometer-level resolution, to possess excellent performance for the linear piezoelectric walking stage of load variations. One multimodal switching controller and one feedforward-feedback controller conduct the coarse mode and fine mode, respectively. The optimal frequency for a specific load is obtained through a backpropagation neural network in the multimodal switching control. In the feedforward-feedback control, the inverse mathematical model based on the Bouc-Wen hysteresis model is used to mitigate the hysteresis effect in the feedforward part while the proportional–integral–derivative controller in the feedback part handles the external system disturbances. Experimental results show the proposed hybrid coarse/fine mode control strategy's effectiveness to satisfy an efficient and accurate positioning task.  相似文献   

15.
Control of piezoelectric actuators is under the effects of hysteresis that could affect actuators micropositioning accuracy. In this paper a modified Prandtl-Ishlinskii (PI) operator and its inverse is utilized for both identification and real time compensation of the hysteresis effect. As a result, the actuator dynamic model would be transformed to the second order linear dynamic model. Considering the parametric uncertainties, PI estimation error and probably unmodeled dynamics, a variable structure controller coupled with adaptive perturbation estimation is proposed for trajectory tracking of the piezoelectric position. Considering the very noisy output of the actuator, a high-gain observer would estimate full states from the only measurable position trajectory. The stability of the controller in the presence of the estimated state is demonstrated with the Lyapunov criterion. Comparing to the widely used proportional-integral controller, the experimental results depicts that the proposed approach is greatly achieved in precisely tracking of multiple frequency trajectories.  相似文献   

16.
采用二自由度车辆动力学状态方程建立了车辆横摆角速度跟踪控制模型。用横摆角速度与其期望值的差值及其变化率作为模糊控制器的输入,设计了模糊自适应PID控制器。基于模糊自适应PID控制器,进行了前轮转向阶跃输入、正弦输入仿真试验。仿真和分析结果表明,设计的模糊PID控制器可实现对参考模型横摆角速度的跟踪,车辆的操纵稳定性得到了有效改善。  相似文献   

17.
The adaptive identification of the non-linear hysteresis and creep effects in a piezoelectric actuator is proposed in this paper. Model uncertainties related to the hysteresis and creep effects, most prominently in the high frequency zone (to 100 Hz), large operating amplitude and/long operating time, can make a piezoelectric actuator-driven micro-positioning system unstable in the closed loop. Furthermore, these uncertainties may lead to inaccurate open-loop control and frequently cause harmonic distortion when a piezoelectric actuator is driven with a sinusoidal input voltage signal. In order to solve the above issues, it is important to determine an accurate non-linear dynamic model of a piezoelectric actuator. An unscented Kalman filter-based adaptive identification algorithm is presented, which accurately determines the non-linear dynamics of a piezoelectric stack type actuator such that the non-linear hysteresis and creep effects can be accurately predicted. Since hysteresis and creep are dominant in open loop, the actuator is driven in an open-loop mode in this investigation.  相似文献   

18.
针对电液伺服系统普遍存在的参数不确定性、不确定非线性(磁滞、摩擦、外干扰等),提出一种基于自适应鲁棒控制的含磁滞补偿的预设性能跟踪控制策略。以阀控单出杆液压缸位置伺服系统为例,首先建立了含磁滞非线性的系统数学模型,然后通过定义预设性能函数,实现了对跟踪误差收敛速率、最大超调量和稳态精度的预先规划,基于规划后的转换误差设计了自适应鲁棒控制器,并提高了稳态和瞬态跟踪性能。仿真对比结果表明:该控制策略可以减小磁滞对系统跟踪精度的影响,提高跟踪误差的收敛速度,减小最大超调量,最终实现优良的跟踪性能。  相似文献   

19.
针对超磁致伸缩致动器(GMA)在精密致动控制中存在的迟滞和位移非线性,提出了小脑神经网络(CMAC)前馈逆补偿结合模糊PID控制的新策略。通过小脑神经网络(CMAC)学习获得超磁致伸缩致动器动态逆模型用于对超磁致伸缩致动器迟滞非线性进行补偿;利用模糊PID控制降低小脑神经网络(CMAC)学习时的误差和抑制扰动,提高系统的跟踪控制性能,从而实现超磁致伸缩致动器的精密致动控制。仿真和实验结果表明:所采用的控制策略有效地消除了迟滞非线性的影响,系统的跟踪误差降低到了5%以下,而位移跟踪误差均方差仅为0.58。此外,这种策略的特点是学习和控制同时进行,控制系统能够适应被控对象动态特性的变化,使系统具有较强的鲁棒性,同时也能够有效地抑制外界的干扰,提升系统的自适应控制性能。  相似文献   

20.
Piezoelectric actuators are widely used in micro manipulation applications. However, hysteresis nonlinearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as the slave manipulator of a teleoperation system based on a sliding mode controller. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in feedforward scheme to cancel out this nonlinearity. The presented approach requires full state and force measurements at both the master and slave sides. Such a system is costly and also difficult to implement. Therefore, sliding mode unknown input observer (UIO) is proposed for full state and force estimations. Furthermore, the effects of uncertainties in the constant parameters on the estimated external forces should be eliminated. So, a robust adaptive controller is proposed and its stability is guaranteed through the Lyapunov criterion. Performance of the proposed control architecture is verified through experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号