首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An advanced x-ray imaging crystal spectrometer (XICS) for KSTAR tokamak has been developed by utilizing a segmented two dimensional (2D) position-sensitive multiwire proportional counter. The XICS for the KSTAR tokamak provides time-resolved measurements of the radial ion and electron temperature profiles, toroidal plasma rotation velocity, and ionization equilibrium. The segmented 2D detector with delay-line readout and supporting electronics has been adopted to improve the photon count rate capability. The current fabrication status of the XICS for the KSTAR tokamak and the first performance test results of the prototype segmented 2D detector are presented.  相似文献   

2.
The x-ray imaging crystal spectrometer (XICS) for the Korea Superconducting Tokamak Advanced Research has been first applied for the experimental campaign in 2009. The XICS was designed to provide measurements of the profiles of the ion and electron temperatures from the heliumlike argon (Ar XVII) spectra. The basic functions of the XICS are properly working although some satellites lines are not well matched with the expected theoretical values. The initial experimental results from the XICS are briefly described.  相似文献   

3.
A tri-band high-resolution spectrometer, which was designed for performing diagnostics on the ITER facility using the charge-exchange recombination spectroscopy (CXRS), is described. The CXRS allows measurements of such plasma parameters as the ion temperature, the speed of the toroidal and poloidal plasma rotation, and the concentration of light impurities. The spectrometer is based on three transparent holographic diffraction gratings and is designed to operate simultaneously in three spectral bands: 468 ± 6 nm, 529 ± 6 nm, and 656 ± 8 nm. The results of measuring the main performance parameters of the transparent diffraction gratings and the spectrometer as a whole are presented. It was established that the characteristics of the developed spectrometer satisfy the requirements for the spectroscopic equipment for the ITER CXRS diagnostic system.  相似文献   

4.
This article describes the completely renovated Thomson scattering (TS) diagnostic employed in the modified Reversed Field eXperiment (RFX-mod) since it restarted operation in 2005. The system measures plasma electron temperature and density profiles along an equatorial diameter, measuring in 84 positions with 7 mm spatial resolution. The custom built Nd:YLF laser produces a burst of 10 pulses at 50 Hz with energy of 3 J, providing ten profile measurements in a plasma discharge of about 300 ms duration. An optical delay system accommodates three scattering volumes in each of the 28 interference filter spectrometers. Avalanche photodiodes detect the Thomson scattering signals and allow them to be recorded by means of waveform digitizers. Electron temperature is obtained using an alternative relative calibration method, based on the use of a supercontinuum light source. Rotational Raman scattering in nitrogen has supplied the absolute calibration for the electron density measurements. During RFX-mod experimental campaigns in 2005, the TS diagnostic has demonstrated its performance, routinely providing reliable high resolution profiles.  相似文献   

5.
A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n(0) = 1.5 × 10(18) m(-3) and a low beam divergence of ±1° simultaneously, achieving a poloidal resolution of Δ(poloidal) = 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of Δ(radial) = 2 mm and a maximum temporal resolution of Δt ? 2 μs (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.  相似文献   

6.
A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD). This instrument will record spatially resolved spectra of helium-like Ar(16+) and will provide ion temperature profiles with spatial and temporal resolutions of <2?cm and ≥10?ms, respectively. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data.  相似文献   

7.
A technique developed to measure in time and space the dynamics of the electron populations resulting from the irradiation of thin solids by ultraintense lasers is presented. It is a phase reflectometry technique that uses an optical probe beam reflecting off the target rear surface. The phase of the probe beam is sensitive to both laser-produced fast electrons of low-density streaming into vacuum and warm solid density electrons that are heated by the fast electrons. A time and space resolved interferometer allows to recover the phase of the probe beam sampling the target. The entire diagnostic is computationally modeled by calculating the probe beam phase when propagating through plasma density profiles originating from numerical calculations of plasma expansion. Matching the modeling to the experimental measurements allows retrieving the initial electron density and temperature of both populations locally at the target surface with very high temporal and spatial resolution (~4 ps, 6 μm). Limitations and approximations of the diagnostic are discussed and analyzed.  相似文献   

8.
A novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels. A dichroic filter splits the light between two spectrometers operating at different wavelengths for impurity ion and beam neutrals emission. In this arrangement, the impurity density is inferred from the electron density, measured BES and CXRS spectral radiances, and atomic emission rates.  相似文献   

9.
The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying region of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T(i) = 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within ~25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic.  相似文献   

10.
A system of beam emission spectroscopy (BES) for density fluctuation measurements having the sightlines passing through the plasma in the poloidal direction was developed in the Large Helical Device (LHD). Even though the angle between the beam and the sightline is slightly larger than a right angle, Doppler-shifted beam emission can be distinguished from background emission because of the high energy (120-170 keV) of the neutral beam for heating with negative ion sources. Spatial resolution is about 0.1-0.2 in the normalized radius. Compared with the prototype BES system with toroidal sightlines, the BES system with poloidal sightlines showed improved spatial resolution.  相似文献   

11.
A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.  相似文献   

12.
A highly sensitive imaging Thomson scattering system was developed for low temperature (0.1-10 eV) plasma applications at the Pilot-PSI linear plasma generator. The essential parts of the diagnostic are a neodymium doped yttrium aluminum garnet laser operating at the second harmonic (532 nm), a laser beam line with a unique stray light suppression system and a detection branch consisting of a Littrow spectrometer equipped with an efficient detector based on a "Generation III" image intensifier combined with an intensified charged coupled device camera. The system is capable of measuring electron density and temperature profiles of a plasma column of 30 mm in diameter with a spatial resolution of 0.6 mm and an observational error of 3% in the electron density (n(e)) and 6% in the electron temperature (T(e)) at n(e) = 4 x 10(19) m(-3). This is achievable at an accumulated laser input energy of 11 J (from 30 laser pulses at 10 Hz repetition frequency). The stray light contribution is below 9 x 10(17) m(-3) in electron density equivalents by the application of a unique stray light suppression system. The amount of laser energy that is required for a n(e) and T(e) measurement is 7 x 10(20)n(e) J, which means that single shot measurements are possible for n(e)>2 x 10(21) m(-3).  相似文献   

13.
Charge exchange spectroscopy is one of the standard plasma diagnostic techniques used in tokamak research to determine ion temperature, rotation speed, particle density, and radial electric field. Configuring a charge coupled device (CCD) camera to serve as a detector in such a system requires a trade-off between the competing desires to detect light from as many independent spatial views as possible while still obtaining the best possible time resolution. High time resolution is essential, for example, for studying transient phenomena such as edge localized modes. By installing a mask in front of a camera with a 1024 × 1024 pixel CCD chip, we are able to acquire spectra from eight separate views while still achieving a minimum time resolution of 0.2 ms. The mask separates the light from the eight spectra, preventing spatial and temporal cross talk. A key part of the design was devising a compact translation stage which attaches to the front of the camera and allows adjustment of the position of the mask openings relative to the CCD surface. The stage is thin enough to fit into the restricted space between the CCD camera and the spectrometer endplate.  相似文献   

14.
An x-ray imaging crystal spectrometer was designed for the Hanbit magnetic mirror device to observe spectra of heliumlike neon at 13.4474 A. The spectrometer consists of a spherically bent mica crystal and an x-ray sensitive vacuum charge coupled device camera. This spectrometer can provide spatially resolved spectra, making it possible to obtain profiles of the ion charge state distribution from line ratios and profiles of the plasma rotation velocity from Doppler shift measurements. The paper describes measurements of spectral resolution of this instrument for low x-ray energies.  相似文献   

15.
The oblique electron cyclotron emission (ECE) diagnostic installed at JET allows simultaneous analysis of the ECE spectra along three lines of sight (with toroidal angles of 0°, ~ 10°, and ~ 20°) and two linear polarizations for each oblique line of sight. The diagnostic is capable of measuring EC emission over the band of 75–800 GHz with 5 ms time resolution and 7.5 GHz spectral resolution, and it is designed to investigate the features of ECE spectra related to electron distribution in the thermal velocity range. Instrumental accuracy was assessed using sources at different temperatures (77–900 K) and with plasma emission. ECE from high temperature plasmas and in the presence of fast ions has been compared to simulations performed with the modeling code SPECE, setting an upper limit to possible discrepancies from thermal emission.  相似文献   

16.
We have developed a fast-scanning heterodyne receiver into a plasma diagnostic that measures the fundamental cyclotron emission from the PLT plasma and thus ascertains the time evolution of the electron temperature profile. The receiver scans 60-90 GHz every 10 ms and is interfaced to a computer for completely automated calibrated temperature measurements.  相似文献   

17.
In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (? = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.  相似文献   

18.
A single chord, single processing chain, hybrid (analog/digital) pulse height analysis diagnostic has been developed for the TCV tokamak, aiming to provide the evolution of the plasma electron temperature with a software selectable minimum temporal resolution of 100 ms. The high count rate (approximately 65 kHz) together with an energy resolution of 190 eV (at 5.9 keV) were achieved by encoding the data stream with an on-site developed interface amplifier and time generator. The diagnostic was also used to investigate the non-Maxwellian behavior of the electron energy distribution function with strong electron cyclotron resonance heating and to monitor the presence of intrinsic and injected impurities in the 700 eV-20 keV energy range. The conversion of this diagnostic into a real-time control tool is under development.  相似文献   

19.
A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.  相似文献   

20.
A technique for reconstructing point-by-point light emission from a plasma using a series of one-dimensional, line-of-sight measurements is described. The method, an adaptation of tomographic x-ray scans, does not assume any symmetry in the plasma, unlike an Abel inversion. Results from the Tormac IV toroidal bicusp device are presented, in which plasma light was collected by a 16-channel polychromator with 0.4-A resolution and a 1-micros time response. Reconstructed plasma light emission with spatial, temporal, and wavelength resolution is then calculated. The profiles of reconstructed spectral lines (Stark broadened H(beta) and Doppler broadened He II 4686-A lines from the 90% H, 10% He plasma) are used to monitor local plasma density and temperature. A spatial resolution of 2 cm in a 14 x 24 cm vessel, which is determined by the number of angles that the plasma is viewed from, is realized. This technique is particularly useful when a high-temperature plasma is surrounded and obscured by a low-temperature, highly emissive plasma near the vessel walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号