首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
W. Shi  X. Y. Li  H. Dong   《Wear》2001,250(1-12):544-552
Surface modification of ultra-high molecular weight polyethylene (UHMWPE) has been explored using the novel non-line-of-slight plasma immersion ion implantation (PIII) with nitrogen. The modified surfaces were characterised by SEM and a Nano Test 600 testing machine. The tribological behaviour of PIII treated UHMWPE sliding against AISI 316L stainless steel counterfaces was evaluated using a pin-on-disc tribometer under water lubricated conditions. The experimental results show that PIII is a very promising surface engineering technique to improve such surface mechanical properties as surface hardness and elastic modulus of UHMWPE. As a result, the wear resistance of UHMWPE was significantly enhanced by a factor of three following PIII treatment, as compared with untreated material. It was found that the significantly improved wear resistance of PIII treated UHMWPE can be mainly attributed to ion bombardment induced cross-linking, and thus surface hardening.  相似文献   

2.
It is known that wear mechanisms differ between the ultra-high molecular weight polyethylene (UHMWPE) components of total hip replacement (THR) and total knee replacement (TKR). The difference in relative contact position or 'kinematic conditions of contact' between the metal and polymer components is thought to contribute to the contrast in observed wear mechanisms. A reciprocating wear tester was used to evaluate three basic kinematic contact conditions: sliding, in which the relative contact position on the polymer remains stationary; gliding, where the contact position on the polymer reciprocates; and rolling, where the contact position on the polymer varies and the relative velocities of both components are equal. All static load tests used cast Co-Cr alloy and irradiated Chirulen UHMWPE in a 37 degrees C environment lubricated with bovine serum albumin. UHMWPE test sample wear was measured gravimetrically at intervals of 600,000 cycles. The results indicated a difference in wear factor (volume lost due to wear per unit load per unit sliding distance) between the three groups with varying relative motion. The study indicates that screening tests which evaluate wear properties of new materials for total joint replacement should reflect the different kinematic contact conditions.  相似文献   

3.
A study has been made of the sliding wear behaviour of untreated and ion implanted ultra high molecular weight polyethylene (UHMWPE) against a surface modified titanium alloy (Ti-6Al-4V) using a pin on disc apparatus. It was found that the presence of water lubrication and a very smooth counterface was necessary to maintain low wear rates of the UHMWPE. A ‘zero wear’ effect was observed when nitrogen implanted UHMWPE was tested against very smooth counterfaces (Ra ≈ 0.03 μm) of either surface oxidized or nitrogen implanted Ti-6Al-4V under water lubrication. The enhanced mechanical and physical properties of the surface treated materials are believed to be responsible for the improved wear performance.  相似文献   

4.
The friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against bearing steel (AISI 52100) in a ring-on-block contact mode under the lubrication of aqueous solution of 3.5% NaCl was evaluated. The worn polymer surfaces were analyzed by means of three dimensional profiling, atomic force microscopy, Polarized Raman microanalysis, field emission scanning electron microscopy, and nanoindentation testing. It was found that unusual wavelike abrasion patterns were formed on the worn surface of UHMWPE under properly selected sliding conditions. In the presence of plowing effect, the molecular chains of UHMWPE and short-rod like microcrystalline grains of abrasion pattern were both further oriented along the plowing direction and became tiny and dense owing to microstructure reconstruction. Resultant microstructurally reconstructed worn surface of UHMWPE had a higher nanoindentation hardness and modulus as well as increased wear resistance.  相似文献   

5.
Computational wear models need input data from valid tribological tests. For the wear model of a total hip prosthesis, the contact pressure dependence of wear and friction of ultra-high molecular weight polyethylene (UHMWPE) against polished CoCr in diluted calf serum lubricant was studied, and useful input data produced. Two test devices were designed and built: a heavy load circularly translating pin-on-disc (HL-CTPOD) wear test device and an HL-CTPOD friction measurement device. Both can be used with a wide range of loads. The wear surface diameter of the test pin was kept constant at 9 mm, whereas the load was varied so that the nominal contact pressure ranged from 0.1 to 20 MPa. The wear factor decreased with increasing contact pressure, whereas the coefficient of friction first increased with increasing contact pressure with low pressure values and then decreased. Up to the pressure of 2.0 MPa, the wear mechanisms and wear factors were in good agreement with clinical findings. In the critical range of 2.0-3.5 MPa, the wear mechanisms and wear factors started to differ from clinical ones, and the decrease of the wear factor steepened. The discrepancy became more and more evident as the pressure was gradually increased beyond 3.5 MPa. It appears that the pressure value of 2.0 MPa should not be exceeded in pin-on-disc wear tests that are to reproduce the clinical wear of UHMWPE acetabular cups.  相似文献   

6.
A loading protocol approximating forces, torques and motions at the knee during stair descent was developed from previously published data for input into a force-controlled knee simulator. A set of total knee replacements (TKRs) was subjected to standard walking cycles and stair descent cycles at a ratio of 70: 1 for 5 million cycles. Another set of implants with similar articular geometry and the same ultra-high molecular weight polyethylene (UHMWPE) resin (GUR 415), sterilization and packaging was tested with standard walking cycles only. Implant kinematics, gravimetric wear and surface roughness of the UHMWPE inserts were analysed for both sets of implants. Contact stresses were calculated for both loading protocols using a Hertzian line contact model. Significantly greater weight loss (p < 0.05) and more severe surface damage of UHMWPE inserts resulted with the walking + stair descent loading protocol compared to walking cycles only. Anterior-posterior (AP) tibiofemoral contact point displacements were lower during stair descent than walking, but not significantly different (p = 0.05). Contact stresses were significantly higher during stair descent than walking, owing to higher axial loads and the smaller radius of curvature of the femoral components at higher flexion angles. High contact stresses on UHMWPE components are likely to accelerate the fatigue of the material, resulting in more severe wear, similar to what is observed in retrieved implants. Thus the inclusion of loading protocols for activities of daily living in addition to walking is warranted for more realistic in vitro testing of TKRs.  相似文献   

7.
Ultra-high molecular weight polyethylene (UHMWPE) is a common bearing component in total knee replacement (TKR) implants, and its susceptibility to wear continues to be the long-term limiting factor in the life of these implants. This study hypothesized that in TKR systems, a highly cross-linked (HXL) UHMWPE blended with vitamin E will result in reduced wear as compared to a direct compression-moulded (DCM) UHMWPE. A wear simulation study was conducted using an asymmetric lateral pivoting '3D Knee' design to compare the two inserts. The highly cross-linked UHMWPE was aged prior to the testing and force-controlled wear testing was carried out for 5 million cycles using a load-controlled ISO-14243 standard at a frequency of 1 Hz on both groups. Gravimetric measurements of DCM UHMWPE (4.4 +/- 3.0 mg/million cycles) and HXL UHMWPE with vitamin E (1.9 +/- 1.9 mg/million cycles) showed significant statistical differences (p < 0.01) between the wear rates. Wear modes and surface roughness for both groups revealed no significant dissimilarities.  相似文献   

8.
This paper studies the effect of contact stress on friction and wear of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups by means of friction and wear joint simulator testing under serum lubrication. For a given applied load, increasing the contact stress by increasing the ball/socket radial clearance decreased both the coefficient of friction and the wear rate. Friction and wear were highly correlated. The dependence of friction on contact stress for the UHMWPE socket under serum lubrication was similar to that of semi-crystalline polymers under dry sliding. This finding indicates the occurrence of partial dry contact at asperity levels for the metal-polyethylene ball-in-socket joint under serum lubrication.  相似文献   

9.
To improve wear properties of artificial joints, cross-linked ultra-high molecular weight polyethylene (UHMWPE) was crystallized under compression in a molten state. Slight cross-linking was created by γ-ray irradiation at a 0.5 Mrad dose under reduced pressure at room temperature before the compression. Next, the UHMWPE was melted at 200°C and compressed using two metal plates. The compression ratio (CR) is defined as the ratio of the final thickness to the original thickness of the sample. The molecular chain of the UHMWPE was orientated to the direction of deformation and was crystallized by cooling to room temperature while maintaining the deformation. The (2 0 0) crystalline plane was only orientated parallel to the compression plane in the CR=2 sample; however, in the case of the CR=5 sample, both the (2 0 0) and the (1 1 0) crystalline planes were orientated parallel to the compressed surface. The density and melting point of the sample depended on the compression ratio. The physical and the mechanical properties were increased in accordance with their compression ratio. The c-peak of the loss modulus was shifted to a higher temperature compared with the non-compressed sample. Dimensional stability of the compressed sample by heating near 135°C was not found. It was confirmed that the wear factor also depended on the compression ratio based on the findings of pin-on-disc and pin-on-flat wear tests. The wear factor of the (CR=2) sample was similar to the non-compressed sample (CR=1); in contrast, that of the CR=5 sample was significantly smaller.  相似文献   

10.
The study was initiated to assess the suitability of Ti-6Al-4V as a metal which articulates against Ultra High Molecular Weight (UHMW) polyethylene in total joint applications. The wear surfaces of Ti alloy were prepared to different levels of surface roughness and the effect of various surface chemical treatments were examined. A specially designed annular contact laboratory wear tester was developed to provide the surface loading and articulation. Comparative tests were also performed using 316 LVM stainless steel and Co-Cr-Mo alloy metallic wear components. All annular contact wear tests were performed in mammalian Ringer's solution environments and were evaluated using standard statistical techniques. Scanning electron microscope (SEM) analysis of the wear surfaces indicates the formation of a polyethylene transfer film on all metal surfaces. The surface of the UHMW polyethylene samples after testing was considerably rougher than the original articulating metallic surface; the transfer film on the metal surfaces was responsible for this. It was concluded that Ti-6Al-4V is satisfactory for total joint replacement when used in combination with UHMW polyethylene. Proper surface preparation may allow lower rates of wear than conventional orthopaedic alloys.  相似文献   

11.
The effect of radiation dose on the depth-dependent oxidation and wear of shelf-aged gamma-irradiated UHMWPE was investigated in this paper. FTIR, micro-indentation, pin-on-plate wear tests and SEM imaging were carried out at three representative regions (surface, subsurface and center) for each sample. The experimental results show that when the oxidation index (OI) <1, the wear rate is clearly affected by the radiation dose (crosslinking density). When 1<OI<3, the wear rates are mainly controlled by the OI. When OI>3 – except for the 1000 kGy specimen – the wear resistance is severely deteriorated and the relationship with the radiation dose is difficult to predict. Results suggest that higher irradiation (above 200 kGy) is capable of lowering the oxidative degradation of UHMWPE.  相似文献   

12.
Since the implication of polyethylene wear debris as a major cause of osteolysis in total joint replacements, there has been much interest in polyethylene wear studies and in cell culture studies using ultra-high molecular weight polyethylene (UHMWPE) wear debris. Studies have shown that particles in the 0.1-10 microns size range are particularly important in causing adverse cellular reactions resulting in osteolysis. The morphology, the mass and size distributions, and the number of wear particles produced at the joint surfaces are influenced by the tribological conditions at the joint. Laboratory wear tests are used to investigate the wear properties of prosthetic joint materials and different research groups have used different lubricants in these tests. This paper shows that the volumetric wear and morphology of UHMWPE particles generated in vitro are influenced by the type of lubricant used. This study compared, quantitatively, UHMWPE wear debris generated in deionized water to debris that was generated in a system lubricated by bovine serum which was diluted to 25 per cent. The wear factors of UHMWPE in water and serum lubricants were significantly different (p < 0.05). UHMWPE wore 14 times more in water than in serum. Quantitative analysis of the wear particles showed that the debris that was generated in serum was morphologically different from debris that was produced in a water-lubricated system. Furthermore, the particles produced in serum showed a closer similarity to those found in retrieved acetabular tissues.  相似文献   

13.
Ultra-high molecular weight polyethylene (UHMWPE) wear debris induced osteolysis has a major role in the late aseptic loosening and ultimate failure of total hip replacements (THR). Clinically relevant in vitro simulations of wear are essential to predict the osteolytic potential of bearing surfaces in artificial hip joints. Newborn calf or bovine serum has been accepted as a boundary lubricant for such in vitro tests, but its biological stability has been questioned. This study compared the wear factors, number of wear particles and levels of microbial contamination produced in bovine serum and a gelatin-based lubricant. The wear factors produced by the two lubricants were not significantly different, however the wear debris morphology produced was substantially different. The bovine serum became contaminated with micro-organisms within 28 h, whereas the protein-based lubricant remained uncontaminated. The results showed that bovine serum was not a stable boundary lubricant. They also showed that although the wear factors for the two solutions were not significantly different, the protein-based lubricant was not a suitable alternative to bovine serum because the wear debris produced was not clinically relevant.  相似文献   

14.
X. Y. Li  H. Dong  W. Shi 《Wear》2001,250(1-12):553-560
Laboratory studies indicate that sliding Ti6Al4V against soft ultra-high molecular weight polyethylene (UHMWPE) pins produces severe damage to the titanium and the lubricant (water) changes colour suggesting chemical change. Blackening of periprosthetic tissues associated with titanium wear debris was also observed in clinical investigations. To increase scientific understanding of the mechanism involved, systematic characterisation work has been conducted employing grow discharge spectrometry (composition), scanning electron microscopy (wear morphology) and cross-sectional transmission electron microscopy (phase identification). Experimental results show that hydrogen may play an important role in promoting the formation of abrasive particles in the Ti6Al4V/UHMWPE tribosystem under water lubricated conditions. The observed abnormal wear of Ti6Al4V by soft UHMWPE can be to a large extent attributed to hydrogen evolution and formation of titanium hydride. Based on experimental results and discussion, a hydrogen-assisted wear mechanism is proposed.  相似文献   

15.
There is considerable interest in the wear of polyethylene and the resulting wear-debris-induced osteolysis in artificial hip joints. Proteins play an important role as boundary lubricants in vivo in the pseudosynovial fluid, and these are reproduced in in vitro tests through the use of bovine serum. Little is known, however, about the effect of phospholipid concentrations within proteinaceous solutions on the wear of ultra-high molecular weight polyethylene (UHMWPE). The effects of protein-containing lubricants with 0.05, 0.5 and 5 per cent (w/v) phosphatidyl choline concentrations on the wear of ultra-high molecular weight polyethylene (UHMWPE) were compared with 25 per cent (v/v) bovine serum which had 0.01 per cent (w/v) lipid; the effects were compared in a hip joint simulator with smooth (n = 4) and scratched (n = 3) femoral heads. The control bovine serum lubricant produced UHWMPE wear of 55 and 115 mm3/10(6) cycles on the smooth and rough heads respectively. The increased phospholipid concentration significantly reduced the wear rate. At the higher concentration (5% w/v phosphatidyl choline) the average wear was reduced to less than 2 mm3/10(6) cycles. Even with the relatively low concentrations of 0.05% w/v phosphatidyl choline the wear was reduced by at least threefold compared with the bovine serum tests for both the smooth and rough femoral heads. There may be considerable differences in the phospholipid concentrations in patients' synovial fluid and this is highly likely to produce considerable variation in wear rates. In vitro, differences in the phospholipid concentration of lubricants may also cause variation in wear rates between different simulator tests.  相似文献   

16.
Pin-on-disk sliding wear studies have been conducted on untreated and ion-implanted UHMWPE against an oxidised Ti-6Al-4V alloy. Under water lubricated conditions no wear was measured. The enhanced mechanical and physical properties of the surface treated materials are responsible for the improved wear performance which may be of great importance to orthopaedic prostheses.  相似文献   

17.
Studies of explanted hip prostheses have shown high wear rates of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups and roughening of the surface of the metallic femoral head. Bone and bone cement particles have also been found in the articulating surfaces of some joints. It has been proposed that bone or bone cement particles may cause scratching and deterioration in the surface finish of metallic femoral heads, thus producing increased wear rates and excessive amounts of wear debris. Sliding wear tests of UHMWPE pins on stainless steel have been performed with particles of different types of bone and bone cement added. Damage to the stainless steel counterface and the motion of particles through the interface have been studied. Particles of bone cement with zirconium and barium sulphate additives and particles of cortical bone scratched the stainless steel counterface. The cement particles with zirconium additive produced significantly greater surface damage. The number of particles entering the contact and embedding in the UHMWPE pin was dependent on particle size and geometry, surface roughness and contact stress. Particles are likely to cause surface roughening and increased wear rates in artificial joints.  相似文献   

18.
Early failure of knee replacements is thought to be due to the combination of sterilization by gamma irradiation in air and the high cyclic stresses that they endure during use. Such failures are shown through delamination and permanent deformation of the ultra-high molecular weight polyethylene (UHMWPE) component. This study investigated whether gas plasma sterilization, as an alternative to gamma irradiation in air, would give better performance after ageing in a knee replacement using a metal pin on polymer plate wear test. Fourier transform infrared (FTIR) analysis was performed on the components to assess oxidation levels and a finite element stress analysis model is presented to estimate strain at failure in the UHMWPE. Delamination occurred in the majority of the gamma-irradiated plates but did not occur in any of the gas-plasma-sterilized plates. The FTIR analysis showed that the plates gamma irradiated in air were highly oxidized when compared with the gas-plasma-sterilized plates. Plastic strain at failure was determined for the gamma-irradiated plates and found to be less than 2.4-14 per cent.  相似文献   

19.
D. Dowson  R.T. Harding 《Wear》1982,75(2):313-331
In recent years there has been growing interest in the use of high density alumina ceramic material for the femoral ball in association with ultrahigh molecular weight polyethylene (UHMWPE) for the acetabular component in total replacement hip joints.The wear characteristics of UHMWPE pins sliding against a high density alumina ceramic disc in the presence of distilled water in a tri-pin-on-disc machine have been revealed in very long-term experiments reported in this paper. A total sliding distance in excess of 6000 km was achieved and very low mean wear coefficients of the order of 10?8 mm3 N?1 m?1 were recorded.Experiments were also carried out over a shorter sliding distance under dry conditions and the average wear coefficient of 2 × 10?7mm3N?1m?1 was consistent with earlier findings. In these dry tests, comet-like streaks of polyethylene were transferred to the ceramic counterface, but no such transfer was noted during the wet tests. When distilled water was added to the test chamber after a considerable period of dry sliding, the wear coefficient rapidly decreased to about 10?8 mm3 N?1 m?1 and the streaky transfer film disappeared from the ceramic counterface.The possibility of hydrodynamic action between the wear face on the pins and the counterface was investigated by reversing the direction of sliding. Surface topography changes on both the pins and the discs and friction and bulk temperatures of the pins were recorded throughout the tests.It is concluded that the excellent dry wear coefficients of UHMWPE sliding on alumina ceramic counterfaces are about twenty times greater than those experienced by the same materials in the presence of distilled water. The tribological advantage of the ceramic with respect to stainless steel having a similar surface roughness has been confirmed in dry sliding involving UHMWPE, but further work is required to determine whether or not the same advantage can be achieved under wet conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号