首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitrogen (N) composition of streams draining four upland regions of Scotland was compared in samples collected monthly between April 1997 and April 1998. Stream samples were analysed for total N (TN), particulate N (PN), nitrate (NO3), ammonium (NH4), dissolved organic N (DON) and dissolved organic carbon (DOC). Concentrations of TN were small, generally less than 1 mg l(-1) , dominated by dissolved forms of N, and varied significantly between upland regions. Nitrate accounted for most of the variability in TN; largest concentrations were observed in the Southern Uplands and smallest concentrations were observed in the Highlands. Nitrate concentrations were positively correlated with the percentage cover of improved grasslands and brown forest soils and negatively correlated with the percentage cover of peat. Concentrations of DON also varied between regions, but to a lesser extent than those of NO3. Largest concentrations occurred in SW Scotland and smallest concentrations in the Cairngorms. Although a significant positive correlation between DON and DOC was observed, stream water DON content was not related to the percentage cover of peat in the catchment, as was the case for DOC. The average DOC:DON ratio was narrower for streams in the Southern Uplands than for those in the Cairngorms and Highlands. Nitrate and DON displayed contrasting seasonal trends; NO3 concentrations were larger in the winter while DON concentrations were larger in the summer. Only a small proportion, < 8% and < 7%, of TN was PN and NH4, respectively, the majority of N was present as either NO3 or DON. Nitrate was the dominant fraction (58-65%) in all regions except the Highlands where DON accounted for 57% of TN. However, the relative importance of the DON component increased in the summer in all regions. This study has demonstrated that the DON fraction is an important component of the total N transported by streams from upland catchments in Scotland. Thus, assessments of anthropogenic impacts on N losses from upland ecosystems need to consider not only the dissolved inorganic species but also DON.  相似文献   

2.
Since a rise in dissolved organic carbon (DOC) concentrations has been observed for surface waters at least over the last two decades, a change in weather conditions (temperature and precipitations) has been proposed to partly explain this increase. While the majority of DOC delivery from soils to stream occurs during rainfall events, a better understanding of the rainfall influence on DOC release is needed. This study has been conducted in Brittany, western France, on agricultural experimental plots receiving either cattle manure (CM) or pig slurry (PS) as fertilizers in accordance with local practices. Each plot was instrumented with a flow meter and an auto sampler for runoff measurements. The results show that export of DOC during high intensity events is higher than during lower intensity rainfalls. Fertilization has a noticeable impact on total organic carbon (TOC) fluxes with an increase of five to seven folds for PS and CM respectively. If TOC shock load occurs shortly after the rainfall peak, DOC maximum appears with the first flush of the event. Organic carbon (OC) is mainly under colloidal (41.2%) and soluble (23.9%) forms during the first stage of a rainfall event and a control of rainfall intensity on OC colloidal transport is suggested. These findings highlight the potential risk of receiving water quality degradation due to the increase of heavier rainfall events with climate change in temperate areas.  相似文献   

3.
The transfer of carbon from terrestrial peat to the fluvial environment forms an important component of the peatland carbon cycle, and has major implications for water quality. Dissolved organic carbon (DOC) is generally considered the largest constituent of aquatic carbon and tends to be the most intensively monitored, particularly in peatland catchments. However, many long-term records for DOC are based on proxy studies that use water colour as a surrogate. This paper tests the robustness of using spectrophotometric techniques to monitor water colour, based on absorbance from a single wavelength at 400 nm, as a surrogate for true DOC determination. The general ability of spectrophotometric analysis to measure low DOC concentrations depends on the calibration used; thus, the minimum mass of DOC detectable varies considerably and in this study was found to be as high as 10.32 mg C L− 1. While there is often a significant correlation between water colour and DOC, it was found that the use of single or even “pooled” regressions to predict DOC concentrations could result in miscalculations of more than 50%. Further, the water colour-DOC relationship in blanket peat pore waters was found to vary significantly between peat layers, land management treatments and through time. Thus, studies using long-term water colour records as a proxy for long-term DOC concentrations in peatlands must be treated with a certain degree of caution, especially in cases where changes may have taken place to DOC production, such as those caused by land management change, during the course of investigation.  相似文献   

4.
The importance of soil storage in global carbon cycling is well recognised and factors leading to increased losses from this pool may act as a positive feedback mechanism in global warming. Upland peat soils are usually assumed to serve as carbon sinks, there is however increasing evidence of carbon loss from upland peat soils, and DOC concentrations in UK rivers have increased markedly over the past three decades. A number of drivers for increasing DOC release from peat soils have been proposed although many of these would not explain fine-scale variations in DOC release observed in many catchments.We examined the effect of land use and management on DOC production in upland peat catchments at two spatial scales within the UK. DOC concentration was measured in streams draining 50 small-scale catchments (< 3 km2) in three discrete regions of the south Pennines and one area in the North Yorkshire Moors. Annual mean DOC concentration was also derived from water colour data recorded at water treatment works for seven larger scale catchments (1.5-20 km2) in the south Pennines. Soil type and land use/management in all catchments were characterised from NSRI digital soil data and ortho-corrected colour aerial imagery.Of the factors assessed, representing all combinations of soil type and land use together with catchment slope and area, the proportion of exposed peat surface resulting from new heather burning was consistently identified as the most significant predictor of variation in DOC concentration. This relationship held across all blanket peat catchments and scales.We propose that management activities are driving changes in edaphic conditions in upland peat to those more favourable for aerobic microbial activity and thus enhance peat decomposition leading to increased losses of carbon from these environments.  相似文献   

5.
Data on small-scale spatial variations in instantaneous fluxes and concentrations of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and free carbon dioxide (CO2) are presented for a small acidic headwater stream in NE Scotland. Chloride is used as a conservative element to estimate additional, diffuse inputs of water into the main stem of the stream, other than those from tributaries. Downstream changes in instantaneous carbon fluxes were calculated and then used to estimate losses and gains of carbon within the stream system. Dissolved organic carbon concentrations in the stream ranged from 1.19-6.06 mg l(-1) at its source to a maximum of 10.0-25.3 mg l(-1) as the stream passed through deep peats; DOC concentrations then declined in the lower part of the catchment. DIC concentrations were initially low, increased to 1.5-3.0 mg l(-1) and then decreased to 0.1-1.65 mg l(-1) at the lowest site. Free CO2 concentrations increased from 0.35 mg l(-1) at the stream source to 3.30 mg l(-1) as the stream passed through the peat dominated area. Continually high inputs of CO2-rich water (> 6.0 mg l(-1)) from tributaries maintained these high concentrations in the main stem, until approximately 1.74 km downstream, when there was a rapid decline in concentration. Significant changes in DOC, DIC and CO2 fluxes occur over a distance of 2.7 km downstream from the stream source to the catchment outlet. Between 5.64-41.5 mg C s(-1) as DOC and 2.52-16.2 mg C s(-1) as DIC are removed from the water column. Between 6.81 and 19.0 mg C s(-1) as CO2 is lost along the stream length as progressive equilibration with the atmosphere occurs. We estimate that 11.6-17.6% of the total DOC flux is removed from streamwater by in-stream processes. Dissolved inorganic carbon (HCO3- and free CO2) losses are in excess of nine times its measured flux at the outlet of the catchment. These results suggest that in-stream processing of DOC and DIC and outgassing of CO2 are important controls on the spatial variability of carbon fluxes within headwater streams in upland catchments dominated by organic-rich soils.  相似文献   

6.
Chow AT  Tanji KK  Gao S 《Water research》2003,37(18):4475-4485
Water passing through the Sacramento-San Joaquin Delta contains elevated concentrations of dissolved organic carbon (DOC) and trihalomethane (THM) precursor relative to upstream waters from the Sacramento River and the San Joaquin River. Drainage from agricultural peat soils has been identified as one of the major sources of DOC and THM precursor. A series of controlled laboratory experiments were conducted to evaluate abiotic and biotic effects on the quantity and the nature of DOC and THM precursors produced from oxidized surface and reduced subsurface soils in the Delta. For abiotic effects, DOC was extracted from both soils with synthetic solutions containing a range of salinity (0-4 dS/m) and sodicity (0 to infinity ). The results showed that an increase in salinity significantly decreased the concentration of DOC in the soil-water from both soils but increased its aromaticity, as indicated by specific ultraviolet absorbance at 254 nm (SUVA). For biotic effects, peat soils were incubated over a range of temperatures (10 degrees C, 20 degrees C and 30 degrees C) and soil moisture contents (0.3-10 g water/g soil). After 8 weeks of incubation, only extracted DOC from flooded conditions and flooded and non-flooded cycles showed an increase in DOC. These findings indicate that neither salinity nor sodicity is the major factor for DOC production, but both can affect the solubility and mobility of DOC in the Delta soils. We believe wetting processes in oxidized peat soils produce significant amounts of DOC found in agricultural drainage discharged into the Delta waters.  相似文献   

7.
The changes in the amounts and composition of dissolved organic matter (DOM) following long-term peat restoration are unknown, although this fraction of soil organic matter affects many processes in such ecosystems. We addressed this lack of knowledge by investigating a peatland in south-west Germany that was partly rewetted 20 years ago. A successfully restored site and a moderately drained site were compared, where the mean groundwater levels were close to the soil surface and around 30 cm below surface, respectively. The concentrations of dissolved organic carbon (DOC) at 4 depths were measured over one year. The specific absorbance was measured at 280 nm and the fluorescence spectra were used to describe the aromaticity and complexity of DOM.The investigations showed that 20 years of peatland restoration was able to create typical peatland conditions. The rewetted site had significantly lower DOC concentrations at different depths compared to the drained site. The specific UV absorbance showed that the rewetted site had a lower level of aromatic DOM structures. The decreasing specific UV absorbance might indicate an increasing contribution of small organic molecules to DOM. It was hypothesized that the decreasing DOC concentrations and the relative enrichment of small, readily degradable organic molecules, reflect the slower decomposition of organic matter after the re-establishment of the water table. Seasonal trends provided substantial evidence for our hypothesis that reduced DOC concentrations were caused by reduced peat decomposition. During summer, the elevated DOC values were accompanied by an increase in DOM aromaticity and complexity. Our results demonstrated a close link between C mineralization and DOC production. We concluded that long-term peatland restoration in the form of the successful re-establishment of the water table might result in reduced peat decomposition and lower DOC concentrations. The restoration of peatlands seems to have a positive impact on C sequestration.  相似文献   

8.
A detailed investigation into sulphur leaching in peatland headwater catchments in the South Pennines, UK shows that, despite significant reductions in sulphur emissions, sulphur remains a key acidifier. This sulphur can be considered as legacy atmospheric pollution, stored within the peat by processes of dissimilatory sulphate reduction and now being leached into the region's surface waters. Persistently lower water tables at gully edge locations define a thick erosional acrotelm that is vulnerable to aeration, oxidation and flushing throughout the year, and not solely confined to periods of drought. Stream discharge behaves as a two-end member system, whereby pre-event water, rich in DOC and sulphate, is diluted by event water as a result of event water flowing through fast flow pathways such as macropores and overland flow. A rapid increase in water table elevation during the storm and a decrease in elevation after the storm indicate that event water has infiltrated the peat and has then been released into the stream. Streamwaters in peat dominated upland catchments with high densities of gullying have high concentrations of sulphate and low concentrations of DOC, whereas the reverse is true for those catchments with low densities of gullying. This is consistent with the concept that high concentrations of sulphate can suppress the solubility of DOC. A significant store of sulphate exists within South Pennine peats, and continued gully erosion will enhance sulphur leaching meaning that the timescale involved for any depletion is uncertain. It is therefore important that models predicting recovery from acidification in these upland systems include an understanding of how this stored sulphur is being leached, especially with respect to gully erosion, climate change and reduced precipitation.  相似文献   

9.
Organic matter can play an important role in the mobility and fate of As in the environment, but there is a lack of data on As biogeochemistry in ombrotrophic peatlands. The aim of this study was to investigate As retention and release in atmospherically contaminated ombrotrophic peat soils in the Peak District National Park (UK). Solid phase As concentrations in the peat soils exceed 25 mg kg− 1. Solid phase As and Fe concentrations are closely correlated at sites where the peat is subjected to drying and oxic conditions. In a wetter zone of the bog, solid phase As and Fe distributions are decoupled, suggesting that As retention in these systems is not solely controlled by the presence of Fe oxides. Comparison of solid phase As and Pb distributions reveals that As has been subjected to post-depositional mobility in areas of water table fluctuation. Conversely, at permanently waterlogged locations As is immobile. Detailed stream water sampling reveals that As is released from the organic-rich uplands soils into the fluvial system. Dissolved As concentrations are highly variable, with values ranging from 0.20 to 7.28 μg l− 1. Stream water As concentrations are elevated during late summer stormflow periods when there has been re-wetting of the peat after significant water table draw-down. Dissolved As is strongly correlated to dissolved organic carbon under stormflow and baseflow. The results of this study suggest that organic matter plays an important role in As dynamics in ombrotrophic peatlands, but further work is needed to identify the exact As binding and release mechanisms. Drying and re-wetting of ombrotrophic peat soils and associated changes in redox status has the potential to lead to increased As mobility. Further work is needed to provide information on how predicted climate change will influence As cycling at sites containing a legacy of atmospheric contamination.  相似文献   

10.
Over a period of 18 months, the dissolved organic carbon (DOC) concentration of a series of four lakes in North Wales was measured monthly. The lake catchment profiles consisted of an upland thin peat/soil (Llyn Cwellyn), an upland thin peat/soil associated with an adjacent area of small bog (Llyn Teyrn), an upland blanket bog (Llyn Conwy), and large lowland fen and fertile agricultural area (Llyn Cefni). The results examine the indirect effect of temperature and precipitation on the DOC concentrations found in the lakes fed by the catchments. The lowest DOC of the four sites was observed for Llyn Teyrn, varying from 1.2 to 3.30 mg/L, and with the highest being recorded for Llyn Cefni (5.45–10.83 mg/L). Temperature and rainfall data were both collected. Correlations with the DOC exhibited significant relationships with temperature for three of the sampled lakes Cwellyn (r 0.490), Teyrn (r 0.640) and Cefni (r 0.472). Recomputation versus 30‐ and 60‐day temperature lag times improved the correlation coefficients. The data showed weak and insignificant correlations for DOC versus rainfall for the three lakes, but the upland lake, Llyn Conwy, with its blanket bog catchment, did not demonstrate any statistical correlation with temperature, although it did show a significant correlation for DOC versus rainfall (r 0.553, P < 0.05). Over the sampling period, although tentative relationships were found among temperature, rainfall and DOC levels, an indirect association tempered by site hydrology is suggested.  相似文献   

11.
Long-term increases in DOC concentration in rivers draining areas of upland peat are a ubiquitous phenomenon in the UK. Several hypotheses have been proposed to explain these increases, but one compelling explanation is the observed long-term increase in temperature in UK uplands causing increases in peat decomposition rates, and increasing the depth of oxidation as evaporation increases depth to the water table. The study constructed an empirical model for water table depth and decomposition rate calibrated against observations from the Environmental Change Network monitoring site at Moor House in the North Pennines, UK. The study shows: (i) Depth of the water table has not changed significantly over a 30-year period, reflecting the fact that blanket peat is well buffered against climate change. (ii) Increases in temperature are responsible for a 12% increase in DOC production while an approximate 78% increase in DOC production has been observed. (iii) Overall DOC production is predicted to rise by 6% but observation suggests increases on the scale of 97%. (iv) The model inadequately represents changes in production and supply of DOC during periods of severe drought. The study shows that temperature change alone is insufficient to explain observed increases in DOC production. Alternative explanations for large increases in DOC production could include changes in land management, but an enzymic latch mechanism, i.e. derepression of anaerobic degradation, causing increased decomposition rates in response to severe drought is preferred.  相似文献   

12.
Carbon budget for a British upland peat catchment   总被引:3,自引:0,他引:3  
This study describes the analysis of fluvial carbon flux from an upland peat catchment in the North Pennines. Dissolved organic carbon (DOC), pH, alkalinity and calcium were measured in weekly samples, with particulate organic carbon (POC) measured from the suspended sediment load from the stream outlet of an 11.4-km(2) catchment. For calendar year 1999, regular monitoring of the catchment was supplemented with detailed quasi-continuous measurements of flow and stream temperature, and DOC for the months September through November. The measurements were used to calculate the annual flux of dissolved CO(2), dissolved inorganic carbon, DOC and POC from the catchment and were combined with CO(2) and CH(4) gaseous exchanges calculated from previously published values and the observations of water table height within the peat. The study catchment represents a net sink of 15.4+/-11.9 gC/m(2)/yr. Carbon flows calculated for the study catchment are combined with values in the literature, using a Monte Carlo method, to estimate the carbon budget for British upland peat. For all British upland peat the calculation suggests a net carbon sink of between 0.15 and 0.29 MtC/yr. This is the first study to include a comprehensive study of the fluvial export of carbon within carbon budgets and shows the size of the peat carbon sink to be smaller than previous estimates, although sensitivity analysis shows that the primary productivity rather than fluvial carbon flux is a more important element in estimating the carbon budget in this regard.  相似文献   

13.
This study was designed to explore the changes in physico-chemical forms of Pb, Cu, Zn and Sb in a stream draining a contaminated shooting range, located at Steinsjøen in the South-Eastern part of Norway, during a period of 21 days. To obtain information on the element species distribution, an interphased size and charge fractionation system was applied, where membrane filtration (0.45 µm) and ultrafiltration using hollow fibre (nominal cut off 10 kDa) were performed prior to charge fractionation using chromatography (cationic and anionic exchange resins). The results show that Pb mainly was present as particulate and colloidal high molecular mass (HMM) species, Cu as colloidal (HMM) and low molecular mass (LMM) species, while Sb and Zn were mainly present as LMM species. The total element concentrations of Pb, Cu, Zn and Sb were positively correlated to water flow and dissolved organic carbon (DOC), suggesting these are important factors in controlling the run-off of the investigated elements in this catchment. During episodes of higher water flow, the increase in element concentration was mainly in the colloidal fraction. Partial redundancy analysis (pRDA) revealed that variations in pH, HMM organic carbon (HMM OC) and LMM organic carbon (LMM OC) explained 47% of the variation in size distribution of the elements, while variations in precipitation and water flow explained 48% of the variation in the charge distribution of the elements. The variation in concentrations during the period varied by a factor of 4, also stressing the importance of frequent sampling opposed to spot sampling in environmental surveys and risk assessments.  相似文献   

14.
Dissolved organic matter (DOM) is fundamental to many biogeochemical processes in soils and natural waters. Despite the large number of studies reporting on DOM losses from forest soils and in surface waters there is little published data on exports from managed grasslands. The objective of our study was to determine the extent of short-term exports of dissolved organic carbon (DOC) from managed grazed grasslands and to evaluate the influence of fertilizer management and drainage regime. DOC discharged from grazed grassland plots, with a range of management strategies. was determined over 2 months. Total export varied from 42 to 118 kgCha(-1), and was greater from some plots than literature estimates for annual losses from all catchment types. There was a significant (P = 0.048) positive correlation between DOC export and rates of nitrogen application for treatments with no artificial drainage. Increased dry matter production arising from increased fertilizer-N inputs is suggested as an important factor in this relationship. DOC export was significantly (P = 0.032) reduced by artificial drainage and adsorption of DOC to soil surfaces and the restriction of decomposition due to waterlogging are suggested as two possible explanations.  相似文献   

15.
Concentrations of dissolved organic carbon (DOC) in surface waters are increasing across Europe and parts of North America. Several mechanisms have been proposed to explain these increases including reductions in acid deposition, change in frequency of winter storms and changes in temperature and precipitation patterns. We used two modelling approaches to identify the mechanisms responsible for changing surface water DOC concentrations. Empirical regression analysis and INCA-C, a process-based model of stream-water DOC, were used to simulate long-term (1986-2003) patterns in stream water DOC concentrations in a small boreal stream. Both modelling approaches successfully simulated seasonal and inter-annual patterns in DOC concentration. In both models, seasonal patterns of DOC concentration were controlled by hydrology and inter-annual patterns were explained by climatic variation. There was a non-linear relationship between warmer summer temperatures and INCA-C predicted DOC. Only the empirical model was able to satisfactorily simulate the observed long-term increase in DOC. The observed long-term trends in DOC are likely to be driven by in-soil processes controlled by SO42− and Cl deposition, and to a lesser extent by temperature-controlled processes. Given the projected changes in climate and deposition, future modelling and experimental research should focus on the possible effects of soil temperature and moisture on organic carbon production, sorption and desorption rates, and chemical controls on organic matter solubility.  相似文献   

16.
Buffering of recovery from acidification by organic acids   总被引:1,自引:0,他引:1  
In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 mueq l(-1) over 15 years from 1988-2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.  相似文献   

17.
During the last two decades, there is a common trend of increasing concentrations of dissolved organic carbon (DOC) in streams and lakes in Europe, Canada and the US. Different processes have been proposed to explain this trend and recently a unifying hypothesis was presented, concluding that declining sulphur deposition and recovery from acidification, is the single most important factor for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the soil water DOC concentrations should increase as well. However, long-term soil water data from Sweden and Norway indicate that there are either decreasing or indifferent DOC concentrations, while positive DOC trends have been found in the Czech Republic. Based on the soil water data from two Swedish integrated monitoring sites and geochemical modelling, it has been shown that depending on changes in pH, ionic strength and soil Al pools, the DOC solubility might be positive, negative or indifferent. In this study, we test the acidification recovery hypothesis on long-term soil water data (25 and 50 cm soil depth) from 68 forest covered sites in southern Sweden, showing clear signs of recovery from acidification. The main aim was to identify potential drivers for the DOC solubility in soil solution by comparing trends in DOC concentrations with observed changes in pH, ionic strength and concentrations of Aln+. As in earlier Swedish and Norwegian studies, the DOC concentrations in soil water decreased or showed no trend. The generally small increases in pH (median < 0.3 pH units) during the investigation period seem to be counterbalanced by the reduced ionic strength and diminished Al concentrations, increasing the organic matter coagulation. Hence, opposite to the conclusion for surface waters, the solubility of organic matter seems to decrease in uphill soils, as a result of the acidification recovery.  相似文献   

18.
Increasing DOC concentrations in surface waters have been observed across parts of Europe and North America over the past few decades. Most proposed explanations for these widespread trends invoke climate change or reductions in sulphate deposition. However, these factors do not seem apposite to explain either the fine-scale (within kilometres) or regional-scale spatial variation in DOC concentrations observed across the UK.We have reconstructed DOC concentrations and land use for one North Pennine and five South Pennine catchments (UK), located in three discrete areas, over the last four decades. Rainfall, temperature and sulphate deposition data, where available, were also collated and the potential influence of these factors on surface water DOC concentrations was assessed.Four of the six catchments examined showed highly significant (p < 0.001) increases (53-92%) in humic coloured DOC (hDOC) concentrations in drainage waters over the period 1990-2005. Changes in temperature and sulphate deposition may explain 20-30% of this trend in these four catchments. However, the rapid expansion of new moorland burn on blanket peat can explain a far greater degree (> 80%) of the change in hDOC. Far smaller increases in hDOC (10-18%) were identified for the two remaining catchments. These two sites experienced similar changes in sulphur deposition and temperature to those that had seen largest increases in DOC, but contained little or no moorland burn management on blanket peat.This study shows that regional-scale factors undoubtedly underlie some of the recent observed increases in drainage humic coloured DOC. However, changes in land management, in this case the extensive use of fire management on blanket peat, are a far more important driver of increased hDOC release from upland catchments in some parts of the UK. It suggests that the recent rapid increase in the use of burning on blanket peat moorland has implications for ecosystem services and carbon budgets.  相似文献   

19.
Peatlands are large repositories of atmospheric carbon and concern has been raised over the stability of this carbon store because increasing dissolved organic carbon (DOC) concentrations have been observed in peatland drainage waters. A number of potential causes have been proposed in the literature, and conflicting results among studies conducted at different spatial and temporal scales suggest that the methodological approach may be an important confounding factor. The objective of this study was to determine the influence of moisture and temperature on DOC release from a south-central Ontario peatland during the fall (a major export period) following three commonly used approaches: laboratory microcosms, an intensive field study and analysis of long-term data (1980-2008). The effect of variations in temperature and moisture differed among microcosm, field study and analysis of the long-term record. Water content was important at the microcosm scale as DOC concentration and aromaticity increased with peat water-saturation. Drought caused a decrease in DOC concentration and pH, and an increase in sulphate and base cation concentrations. In contrast, the field study indicated that DOC concentration was strongly associated with temperature, and weakly correlated (negatively) with stream discharge. Average fall DOC concentration (but not export) increased over the 29 year record, and was correlated with fall discharge and precipitation (negative) and summer precipitation and fall stream pH (positive). As no common strong predictor of fall DOC was found at three scales of investigation at a single, well-studied site, it may be unreasonable to expect to identify a universal driver behind the widespread increase in DOC concentration.  相似文献   

20.
Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO42− ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号