首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discharge properties of a Na/Ni3S2 cell using 1 M NaCF3SO3 in tetra(ethylene glycol)dimethyl ether liquid electrolyte were investigated at room temperature. The products were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Electrochemical properties of Na/Ni3S2 cells were also presented by cyclic voltammetry and the galvanostatic current method. Na/Ni3S2 cells have an initial discharge capacity of 420 mAh g−1 with a plateau potential at 0.94 V versus Na/Na+. After the first discharge, Ni3S2 and Na react at room temperature and then form sodium sulfide (Na2S) and nickel. Sodium ion can be partially deintercalated from Na2S charge reaction. The discharge process can be explained as follows: Ni3S2 + 4Na ↔ 3Ni + 2Na2S.  相似文献   

2.
A cylindrical hybrid supercapacitor was fabricated using Li4−xNaxTi5O12 as an anode and activated carbon as a cathode. Li4−xNaxTi5O12 (0 ≤ x ≤ 0.6) powder was successfully crystallized, and the grain size of Li4−xNaxTi5O12 decreased with increasing Na content. This indicated that Na can enhance the electrochemical performance due to smaller grain size and ionic conductivity. However, excessive Na content causes a distortion of the original Li4Ti5O12 structure during cycling. The hybrid supercapacitor with the Li3.7Na0.3Ti5O12 anode shows similar electrochemical performance to Li3.4Na0.6Ti5O12, and approximately 92% of the maximum cycle performance is retained, even after 5000 cycles at 2.5 Ag−1.  相似文献   

3.
Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018 cm−3 and resistivity of 10−1 Ω cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.  相似文献   

4.
CuInSe2 and CuIn3Se5 films were grown by stepwise flash evaporation onto glass and Si substrates held at different temperatures. Transmission electron microscopy (TEM) studies revealed that the films grown above 370 K were polycrystalline, with CuInSe2 films exhibiting larger average grain size than CuIn3Se5. Optical absorption studies yielded band gaps of 0.97±0.02 and 1.26±0.02 eV for CuInSe2 and CuIn3Se5, respectively. Rutherford backscattering spectrometry (RBS) study of the films on Si showed that CuInSe2/Si structures included an inhomogeneous interface region consisting of Cu and Si, whereas CuIn3Se5/Si structures presented sharp interface.  相似文献   

5.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

6.
We report the modification of electrical properties of chemical-bath-deposited antimony sulphide (Sb2S3) thin films by thermal diffusion of carbon. Sb2S3 thin films were obtained from a chemical bath containing SbCl3 and Na2S2O3 salts at room temperature (27 °C) on glass substrates. A carbon thin film was deposited on Sb2S3 film by arc vacuum evaporation and the Sb2S3-C layer was subjected to heating at 300 °C in nitrogen atmosphere or in low vacuum for 30 min. The value of resistivity of Sb2S3 thin films was substantially reduced from 108 Ω cm for undoped condition to 102 Ω cm for doped thin films. The doped films, Sb2S3:C, retained the orthogonal stibnite structure and the optical band gap energy in comparison with that of undoped Sb2S3 thin films. By varying the carbon content (wt%) the electrical resistivity of Sb2S3 can be controlled in order to make it suitable for various opto-electronic applications.  相似文献   

7.
The controlled incorporation of sodium into the absorber layer of CuInS2 solar cells improved cell performance remarkably. Without toxic KCN treatment, conversion efficiencies of over 6% were achieved by sulfurization of sodium-containing precursors. We also investigated the characteristics of the sodium-incorporated CuInS2 films by intentional addition and diffusion from a soda-lime glass. The ternary compound semiconductor of NaInS2 was found to form mainly on the surface of each of the CuInS2 films.  相似文献   

8.
One-step electrodeposition using sodium thiosulfate (Na2S2O3) as a sulfur source has been studied for the preparation of Cu---In---S thin films. A deposited film is found to have a sufficiently high sulfur content compared with films deposited using thiourea as a sulfur source. The film deposited using Na2S2O3 is also found to have an excellent morphology compared with electrodeposited Cu---In precursors. Predominant factors to govern film composition, In/Cu and S/(Cu + In) ratios, are also investigated in this study. An HC1 content added in order to decompose S2O32− ions in the solution is found to be one of the important factors to control composition of deposited films. A sulfur cocentration in the solution influences not only S/(Cu + In) ratio but also In/Cu ratio in the film. Reproducibility of film composition is deteriorated as the solution temperature increases.  相似文献   

9.
SILAR deposition of CuInSe2 films was performed by using Cu2+–TEAH3 (cupric chloride and triethanolamine) and In3+–CitNa (indium chloride and sodium citrate) chelating solutions with weak basic pH as well as Na2SeSO3 solution at 70 °C. A separate mode and a mixed one of cationic precursor solutions were adopted to investigate effects of the immersion programs on crystallization, composition and morphology of the deposited CuInSe2 films. Chelating chemistry in two solution modes was deducted based on IR measurement. The XRD, XPS and SEM results showed that well-crystallized, smoothly and distinctly particular CuInSe2 films could be obtained after annealing in Ar at 400 °C for 1 h by using the mixed cationic solution mode.  相似文献   

10.
Microcrystals of In2S3 were formed on sintered In2O3 pellets by sulfurizing in H2S atmosphere. The flat band potential of compound In2S3|In2O3 electrodes was evaluated as −1.0 V vs Ag|AgCl in 1 M KOH, 1 M Na2S, 10−2 M S. Significantly enhanced photocurrent was observed on compound In2S3|In2O3 electrodes with a lower degree of sulfurization to that of compound In2S3|In2O3 electrodes with higher degree of sulfurization. Photocurrent generation of compound In2S3|In2O3 electrodes was explained from the viewpoint of semiconductor sensitization.  相似文献   

11.
We report the preparation of copper antimony sulfide (CuSbS2) thin films by heating Sb2S3/Cu multilayer in vacuum. Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3 salts at room temperature (27 °C) on well cleaned glass substrates. A copper thin film was deposited on Sb2S3 film by thermal evaporation and Sb2S3/Cu layers were subjected to annealing at different conditions. Structure, morphology, optical and electrical properties of the thin films formed by varying Cu layer thickness and heating conditions were analyzed using different characterization techniques. XRD analysis showed that the thin films formed at 300 and 380 °C consist of CuSbS2 with chalcostibite structure. These thin films showed p-type conductivity and the conductivity value increased with increase in copper content. The optical band gap of CuSbS2 was evaluated as nearly 1.5 eV.  相似文献   

12.
Electron beam evaporated Sn-doped In2O3 films have been prepared from the starting material with composition of (1 − x) In2O3 − -x SnO2, where x = 0.0, 0.010, 0.025, 0.050, 0.090, and 0.120. X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and X-ray diffraction analysis were carried out on the films. Luminous transmittance and electrical resistivity of the films, show weak dependence on x. The composition of the film ([Sn]/[In] atomic ratio) was found to differ from that of the starting material. In fact, the atomic ratio was higher in the film than in the starting material by a factor which increases with x (ranging from 1.0 to 2.6). There is a relatively broad resistivity minimum in the layer atomic ratio range Sn/In = 0.06 − -0.09. These results compare well with those reported in the literature for Sn-doped In2O3 films, prepared by pyrolitic (spray) method.  相似文献   

13.
By sulfurization of E---B evaporated precursors, CZTS(Cu2ZnSnS4) films could be prepared successfully. This semiconductor does not consist of any rare-metal such as In. The X-ray diffraction pattern of CZTS thin films showed that these films had a stannite structure. This study estimated the optical band gap energy as 1.45 eV. The optical absorption coefficient was in the order of 104cm−1. The resistivity was in the the order of 104 Ω cm and the conduction type was p-type. Fabricated solar cells, Al/ZnO/CdS/CZTS/Mo/Soda Lime Glass, showed an open-circuit voltage up to 400 mV.  相似文献   

14.
Results of characterization of thin films of Mo deposited by DC magnetron sputtering on soda-lime glass (Mo/SLG) and CuInSe2 (CIS) on Mo/SLG are presented. The primary objective of the work was to clarify the factors determining the concentration of Na in commercial-grade CIS. Mo films were deposited by three laboratories manufacturing CIS thin film solar cells. Analysis was by secondary ion mass spectrometry, scanning electron microscopy and X-ray diffraction. Changes in Mo deposition parameters in general affected the Na level but there was no obvious link to any single Mo deposition parameter. Oxygen content directly affected the Na level. The Na behavior was not obviously connected to film preferred orientation. Selenization of the Mo layers was also examined. Elemental Se vapor was found to produce significantly less selenization than H2Se. The amount of selenization was also strongly dependent upon Mo deposition conditions, although a specific source of the change in reaction rate was not found. Na distributions in the CIS deposited on the Mo were not limited by the diffusivity of the Na. The Na concentration in the CIS was increased by annealing the Mo films both with and without intentionally added Na. The Na level in the CIS appears to be set more by the CIS deposition process than by the Na concentration in the Mo so long as the Mo contains sufficient Na to saturate the available sites in the CIS.  相似文献   

15.
Polycrystalline Cu(In,Ga)Se2 (CIGS) thin films were deposited onto soda-lime glass substrates using the three-stage process at the substrate temperature (Tsub) varying from 350 to 550 °C. The effect of Tsub on the structural and electrical properties of CIGS films has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall effect measurement. We found that the surface roughness, constituent phases, film morphologies, resistivity (ρ) and carrier concentration (NP) of as-grown CIGS films indicated different change trends with increase in Tsub. The higher Tsub gives smooth surface, large grain size and single-phase CIGS films. The values of NP and ρ have two demarcated regions at Tsub of 380 and 450 °C. At lower Tsub of 380 °C, larger NP and lower ρ were dominated by the existence of secondary-phase CuxSe with lower resistivity. In the case of 450 °C, the obvious changes in NP and ρ can be attributed to the sufficient Na incorporation diffused from the glass substrate. Finally, the correlation of cell parameters with Tsub was analyzed.  相似文献   

16.
Simple soft-solution method has been developed to synthesize films and powders of TiO2 and mixed TiO2–SiO2 at relatively low temperatures. This method is simple and inexpensive. Furthermore, reactor can be designed for large-scale applications as well as to produce large quantities of composite powders in a single step. For the preparation of TiO2, we used aqueous acidic medium containing TiOSO4 and H2O2, which results in a peroxo-titanium precursor while colloidal SiO2 has been added to the precursor for the formation of TiO2–SiO2. Post annealing at 500 °C is necessary to have anatase structure. Resulting films and powders were characterized by different techniques. TiO2 (anatase) phase with (1 0 1) preferred orientation has been obtained. Also in TiO2–SiO2 mixed films and powders, TiO2 (anatase) phase was found. Fourier transform infrared spectroscopy (FTIR) results for TiO2 and mixed TiO2–SiO2 films have been presented and discussed. The method developed in this paper allowed obtaining compact and homogeneous TiO2 films. These compact films are highly photoactive when TiO2 is used as photo anode in an photoelectrochemical cell. Nanoporous morphology is obtained when SiO2 colloids are added into the solution.  相似文献   

17.
Bilayer photoanodes were prepared onto glass substrates (FTO) in order to improve generated photocurrents using UV-vis light by water splitting process. A comparative study of photocatalytic was performed over the films surface using Fe2O3, WO3 and mixture of bicomponents (Fe2O3:WO3). Different types of films were prepared using Fe2O3, WO3 and bicomponents (mixture) on FTO substrates. The films were grown by sol gel method with the PEG-300 as the structure-directing agent. The photo-generated of the samples were determined by measuring the currents and voltages under illumination of UV-vis light. The morphology, structure and related composition distribution of the films have been characterized by SEM, XRD and EDX respectively. Photocurrent measurements indicated surface roughness as the effective parameter in this study. The deposited surfaces by bicomponents or mixture are flat without any feature on the surface while the deposited surfaces by WO3 appears rough surface as small round (egg-shaped particles) and cauliflower-like. The surface deposited by Fe2O3 show rough no as well as WO3 surface. The deposited surfaces by WO3 reveal the higher value of photocurrent measurement due to surface roughness. Indeed, the roughness can be effective in increasing contact surface area between film and electrolyte and diffuse reflection (light scattering effect). The solution (Fe2O3:WO3) shows the low photocurrent value in compare to WO3 and Fe2O3 hat it may be due to decomposition the compound at 450 ± 1 °C to iron-tungstate Fe2(WO4)3.  相似文献   

18.
Zinc indium selenide (ZnIn2Se4) thin films have been prepared by spraying a mixture of an equimolar aqueous solution of zinc sulphate (ZnSO4), indium trichloride (InCl3), and selenourea (CH4N2Se), onto preheated fluorine-doped tin oxide (FTO)-coated glass substrates at optimized conditions of substrate temperature and a solution concentration. The photoelectrochemical (PEC) cell configuration of n-ZnIn2Se4/1 M (NaOH+Na2S+S)/C has been used for studying the current voltage (IV), spectral response, and capacitance voltage (CV) characteristics of the films. The PEC study shows that the ZnIn2Se4 thin films exhibited n-type conductivity. The junction quality factor in dark (nd) and light (nl), series and shunt resistance (Rs and Rsh), fill factor (FF) and efficiency (η) for the cell have been estimated. The measured (FF) and η of the cell are, respectively, found to be 0.435% and 1.47%.  相似文献   

19.
Composite NaNH2-NaBH4 (molar ratio of 2/1) hydrogen storage materials are prepared by a ball milling method with various ball milling times. The compositions and hydrogen generation characteristics are investigated by means of X-ray diffraction (XRD) and thermo gravimetric-differential thermal analysis (TG-DTA). The structural characteristics imply that ball milling produces a new phase of Na3(NH2)2BH4, and mechanical energy accumulated in the ball milling process may be responsible for the phase change of Na3(NH2)2BH4. TG-DTA demonstrates that the phase change temperature of the composite NaNH2-NaBH4 (2/1) ball milled for 16 h is 141.8 °C, and the melting point is 197.3 °C; below 400 °C, composite hydrogen storage material is mainly decomposed to give hydrogen and Na3BN2; while above 400 °C, the previous by-product Na3BN2 continues to decompose so as to give metal Na gradually.  相似文献   

20.
We report here that a facile sol-gel dip-coating technique can be used to fabricate a SiO2/TiO2 bilayer film with self-cleaning and antireflection properties. The bottom SiO2 layer acts as an antireflection coating due to its lower refractive index; the top TiO2 layer acts as a self-cleaning coating generated from its photocatalysis and photo-induced superhydrophilicity. The maximal transmittance of SiO2/TiO2 bilayer film at normally incident light can be reached 96.7%, independent of the high refractive index and coverage of TiO2 nanoparticles. However, the photocatalytic activity of the bilayer film shows a close dependence on coverage of TiO2 nanoparticles. After illuminated by ultraviolet light, the SiO2/TiO2 bilayer films are superhydrophilic with water contact angle less than 2°, which favors greatly the self-cleaning function of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号