首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnGa2O4 thin film phosphors have been synthesized on ITO coated glass and soda-lime glass at a firing temperature of 500C and an annealing temperature of 500C and 600C via a chemical solution method using Zinc acetate dihydrate, Gallium nitrate hydrate and 2-methoxiethanol as a solution. XRD patterns of the film phosphors synthesized showed the peaks of ZnGa2O4 crystalline phases. AFM surface morphologies of the ZnGa2O4 thin film phosphors revealed marked differences according to an annealing temperature of 500C and 600C under an annealing atmosphere (3% H2/Ar). On the other hand, the sheet resistance of ZnGa2O4 thin film phosphors, which were measured by four-point probe instrument, was approximately 5.76 Ω /square and 7.86 Ω /square with annealing temperature, respectively. The ZnGa2O4 thin film phosphors exhibited blue emission spectra with peak wavelength of 434 nm and 436 nm by ultra-violet excitation around 230 nm.  相似文献   

2.
The epitaxial growth and properties of Mn2+-doped ZnGa2O4 thin films on various single crystal substrates using pulsed laser deposition were investigated. Control of Zn/Ga stoichiometry required the use of a mosaic ZnGa2O4/ZnO ablation target to compensate for Zn loss due to evaporation. The photoluminescent intensity was a strong function of the Zn/Ga ratio, and also correlated with changes in the surface morphology. Superior photoluminescent intensity was attained from slightly Zn-deficient films which exhibit distinctive worm-like surface features. Enhanced photoluminescent intensity was observed in epitaxial films as compared to randomly-oriented polycrystalline deposits on glass substrates, suggesting an adverse effect of grain boundaries on luminescence properties.  相似文献   

3.
Phosphor powders of zinc gallate (ZnGa2O4) with Mg and Mn for green and Tm‐Mg for blue luminescence were prepared by solid state reaction method for their improved luminescent properties. Green‐luminescence emitting ZnMnGa2O4 reached maximum intensity at Mn = 0.005 mol% and further improvement was achieved by the addition of Mg2+. Tm‐Mg based zinc gallate phosphor exhibited a strong blue emission, centered at ∼420 nm with the maximum intensity achieved for 0.003 mol% of Mg and 0.015 mol% of Tm. This study established the possibilities of controlling the luminescent characteristics of zinc gallate by adding various elements. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

4.
Photoluminescence and photocurrent characteristics of Eu2 + activated MAl2O4 (M = Ba, Ca, Sr) phosphors during and after Ultraviolet ray and visible light irradiation have been investigated. The photoluminescence (PL) and the photocurrent (PC) of the phosphors, in order to elucidate the relationship between the PL and the PC, were measured simultaneously on the same samples within a specially designed measuring box. Composition effects, such as a presence of Dy3 + as a co-activator and Al-rich composition on the PL and PC characteristics have been investigated. Also, sensing characteristics on UV and visual light have been tested. The simultaneous measurement of PL and PC on the same sample clearly indicated that the presence of co-activator and vacant site, namely Al-rich composition, acted as a hole trap; the introduction of co-activator and vacant site decreased the PC and increased the PL during and after UV and visible light irradiation, whose PC was much lower than that of MAl2O4 with only Eu2 + as an activator. The electrical intensity affected on the PL characteristics after UV and visual light irradiation(afterglow); with increasing in the electrical intensity, the afterglow lasted more longer and intensively. The PC of MAl2O4 showed a good proportional relationship to UV and visible light intensity. Especially, SrAl2O4 showed an excellent linearity within 1–5 mW/cm2, but showed somewhat delayed response and hysterisis as seen in CdS photoelectric cell.  相似文献   

5.
ABSTRACT

Bilayer NiCo2O4/NiCo2O4 nanosheet arrays on nickel foam (NF) are fabricated by a two-step solution-based method, which involves in hydrothermal process and chemical bath deposition. Compared with the monolayer NiCo2O4/NF electrode, the NiCo2O4/NiCo2O4/NF displays the unique micro-nanometer hierarchical and porours structure and has excellent pseudocapacitive behaviors in 6 M KOH, which exhibits high specific capacitances of 2363.64 F g?1 at a constant current density of 0.5 Ag?1, and 1454.55 F g?1 at the higher current density of 8 Ag?1, and shows a favourable cycling stability of 77.5% retention after 1000 cycles.  相似文献   

6.
A combustion method using urea as a fuel has been developed for the synthesis of the spinel LiMn2O4 around 500°C. Physical features of the products were identified by X-ray photoelectron spectroscopy, X-ray diffractometry, Raman scattering and FTIR spectroscopy. Cells were fabricated with Li//LiMn2O4 and C//LiMn2O4 in nonaqueous organic electrolyte and their performances were studied. A kinetic profile for diffusion of Li ions in the composite matrix was developed and tested.  相似文献   

7.
Ceramics have generally been fabricated from powders by shape forming & sintering methods except for glasses and glass ceramics. Glasses and glass ceramics can be fabricated by melting methods. The melting method has not only higher productivity but also higher shape forming ability than powder processes via forming & sintering methods. Thus we have reinvestigated melting methods in binary and ternary oxides systems to fabricate amorphous bulk ceramics and bulk nano composites. We have successfully fabricated amorphous phases by simple melt solidification methods in ternary eutectic melts in the HfO2-Al2O3-Gd2O3system. The present study demonstrates the formation of the amorphous phases in quaternary systems HfO2-Al2O3-Gd2O3-Eu2O3. Furthermore, we have also succeeded to fabricate nano-structured bulk ceramics, which consisted of constituent oxide grains with 20–100 nm in size, by post annealing of the amorphous phase.  相似文献   

8.
The research objective of this study was to examine whether Zn was an effective doping element for thermal conductivity. Ca1-xZnxFe2O4 (x = 0.0–0.5) were synthesized by solid state reaction method. The XRD results showed that all samples were mixed phase of CaFe2O4 and ZnFe2O4. The structure of Ca1-xZnxFe2O4 (x = 0.0–0.5) belonged to a group of an orthorhombic system (space group: Pbnm). It was observed that all the samples of Ca1-xZnxFe2O4 (x = 0.0–0.5) had positive Seebeck coefficient as shown on p-type semiconductor behavior. Thus thermal conductivity tended to decrease with increasing x value. The Ca0.6Zn0.4Fe2O4 showed lowest thermal conductivity of 6.52 W m?1 K?1 at 473 K, which was lower than 50.81% of CaFe2O4. These results suggested that Zn was an effective doping element for improving the thermal conductivity of Ca1-xZnxFe2O4.  相似文献   

9.
ABSTRACT

LiMn2O4 nanocrystal was synthesized by coprecipitation using Mn(CH3COO)2 and LiOH as raw materials. Samples were characterized by thermo gravimetric/differential scanning calorimetry, X-ray diffraction and transmission electron microscope. Effort of calcination temperatures (600, 650, 700, 750 and 800°C) on grain size of LiMn2O4 was discussed. Results indicated that temperature had positive correlation with grain size. Grain growth kinetics of LiMn2O4 nanocrystal was simulated with a conventional model and an isothermal model. Simulation results indicated that the isothermal model was suitable to fit with data, implying the important roles of diffusion and surface reaction.  相似文献   

10.
Li2MgTiO4 (LMT) ceramics which are synthesized using a conventional solid-state reaction route. The LMT ceramic sintered at 1250°C for 4 h had good microwave dielectric properties. However, this sintering temperature is too high to meet the requirement of low-temperature co-fired ceramics (LTCC). In this study, the effects of B2O3 additives and sintering temperature on the microstructure and microwave dielectric properties of LMT ceramics were investigated. The B2O3 additive forms a liquid phase during sintering, which decreases the sintering temperature from 1250°C to 925°C. The LMT ceramic with 8 wt% B2O3 sintered at 925°C for 4 h was found to exhibit optimum microwave dielectric properties: dielectric constant 15.16, quality factor 64,164 GHz, and temperature coefficient of resonant frequency -28.07 ppm/°C. Moreover, co-firing of the LMT ceramic with 8 wt% B2O3 and 20 wt% Ag powder demonstrated good chemical compatibility. Therefore, the LMT ceramics with 8 wt% B2O3 sintered at 925°C for 4 h is suitable for LTCC applications.  相似文献   

11.
Abstract

Bismuth-layer-structured ferroelectric thin films, SrBi2Ta2O9 and Bi4Ti3O12, have been prepared by laser ablation method on both Pt sheets and Si wafers at low temperatures of 400 ~ 500°C. These thin films have been characterized by XRD, XPS, AFM, C-V, D-E hysteresis and J-V measurement. SrBi2Ta2O9 thin films have a good (105) preferential orientation, and Bi4Ti3O12 thin films have (117) and c-axis orientation on these substrates. Ferroelectric film-SiO2-Si structures show good C-V hysteresis curve owing to Si surface potential controlled by the D-E hysteresis. D-E hysteresis is obtained in Bi4Ti3O12 thin film prepared on Pt sheet, and the remnant polarization and the coercive force are 7.5 μC/cm2 and 72 kV/cm, respectively.  相似文献   

12.
The effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of BaTi4O9 ceramics was investigated. The BaTi4O9 ceramics were able to be sintered at 975C when B2O3 was added. This decrease in the sintering temperature of the BaTi4O9 ceramics upon the addition of B2O3 is attributed to the formation of BaB2O4 second phase whose melting temperature is around 900C. The B2O3 added BaTi4O9 ceramics alone were not sintered below 975C, but were sintered at 875C when CuO was added. The formation of BaCu(B2O5) second phase could be responsible for the decrease in the sintering temperature of the CuO and B2O3 added BaTi4O9 ceramics. The BaTi4O9 ceramics containing 2.0 mol% B2O3 and 5.0 mol% CuO sintered at 900C for 2 h have good microwave dielectric properties of εr = 36.3, Q× f = 30,500 GHz and τf = 28.1 ppm/C  相似文献   

13.
Bi3.4La0.6Ti3O12 and CoFe2O4 were synthesized by chemical solution route, and Bi3.4La0.6Ti3O12/CoFe2O4 multilayers were deposited by spin coating on Pt substrate. X-ray diffraction of multilayer structures reveals composite-like polycrystalline film. Leakage current is less than 10?5 A at electric field < 90 KV/cm and follows the Ohmic behavior. Dielectric response shows relaxation and the loss (tan δ) is below 3% at 106 Hz. Room temperature ferrroelectric polarization (Pr) = 20.2 μC/cm2 and ferromagnetic memory (Mr) = 46.5 emu/cm3 has been obtained. Co-existence of FE and FM response can be attributed to stress and different permeability and permittivity involved in multilayer structures.  相似文献   

14.
In this study, radio frequency (RF) sputtering was used as the method and the layer-structured bismuth compound of SrBi4Ti4O15 + 4 wt% Bi2O3 ferroelectric ceramic was used as the target to deposit the SrBi4Ti4O15 (SBT) thin films. The addition of excess Bi2O3 content in the target ceramic was used to compensate the vaporization of Bi2O3 during the sintering and deposition processes. SBT ferroelectric thin films were deposited on Pt/Ti/SiO2/Si under optimal RF magnetron sputtering parameters with different substrate temperatures for 2 h. After that the SBT thin films were post-heated using rapid temperature annealing (RTA) method. The dielectric and electrical characteristics of the SBT thin films were measured using metal-ferroelectric-metal (MFM) structure. From the physical and electrical measurements of X-ray diffraction pattern, scanning electronic microscope (SEM), I-V curve, and C-V curve, we had found that the substrate temperature and RTA-treated temperature had large influences on the morphology, the crystalline structure, the leakage current density, and the dielectric constant of the SBT thin films.  相似文献   

15.
洪良仕  李运姣  习小明 《电池》2005,35(6):450-452
以Li2CO3和Mn3O4为原料,采用机械化学法合成了尖晶石LiMn2O4.考察了热处理温度和时间对LiMn2O4电化学性能的影响.720℃下热处理2 h、6 h和10h所得样品的首次放电比容量分别为124.5 mAh/g、124.6 mAh/g和126.3 mAh/g.在400℃、600℃、720℃和800℃下热处理6 h后得到的样品的首次放电比容量分别为120.6 mAh/g、124.4 mAh/g、124.6 mAh/g和128.6 mAh/g,经过10次循环后,比容量下降的幅度分别为13.8%、11.5%、9.5%和6.5%.适宜的热处理制度为:800℃热处理6 h.  相似文献   

16.
Thermoelectric minerals have been found at Loei Province, in the northeastern part of Thailand. Local mineral specimens were prepared in the powders and bulk solids form by crushing, calcination and annealing, pressure and sintering, cutting and polishing. Mineral samples were used to analyze the composition and phase, determine the thermoelectric property and efficiency, design and construct a thermoelectric generator. Chemical composition and phase identification of powder samples were analyzed by the x-ray fluorescence (XRF) and x-ray diffraction (XRD), respectively. XRF and XRD results indicated that the mineral samples comprised the SO3-CaO-SiO2-others, Fe2O3-SO3-SiO2-others, Fe2O3-SiO2-others and Fe2O3-SiO2-CuO-others. From the thermoelectric property and efficiency determinations, the p-SO3-CaO-SiO2-others, p-Fe2O3-SO3-SiO2-others, n-Fe2O3-SiO2-others and n-Fe2O3-SiO2-CuO-others bulks were found to exhibit the thermoelectric figure of merit in orders of 10?14, 10?11, 10?14 and 10?13 K?1, respectively. A fabricated thermoelectric generator made from ten pairs of p-Fe2O3-SO3-SiO2-others and n-Fe2O3-SiO2-CuO-others legs that can be provided the open circuit voltage and short circuit current up to 48.30 mV and 0.14 μA for a temperature difference of 39.80 K at room temperature, respectively. While the internal resistance decreased and reached a value of 665 kΩ.  相似文献   

17.
徐麟  雷新荣  朱华  梅娟 《电池》2007,37(6):425-427
用高温固相法二次烧结制备了锂离子电池正极材料尖晶石LiMn2O4.利用XRD、EDS和SEM等方法及激光粒度分析仪,研究了LiMn2O4的晶体结构、粒径及形貌与电化学性能的关系.与一次烧结的样品比较,二次烧结的样品粒径分布更集中于25~35μm,结晶更完全,电化学性能及循环稳定性更好.二次烧结后掺杂Zn(Ac)2的样品,在常温和高温(55℃)下的首次放电比容量分别为112.8 mAh/g和113.5 mAh/g,经过50次循环后,容量保持率分别为99.7%(常温)和94.5%(高温,55℃).  相似文献   

18.
Ferroelectric Si-doped (Bi,Nd)4Ti3O12 thin films have been prepared on Pt/TiOx/SiO2/Si substrates through metal-organic compounds by the chemical solution deposition. The Bi3.25Nd0.75Ti2.9Si0.1O12 (BNTS) precursor films were found to crystallize into the Bi-layered perovskite Bi4Ti3O12 single-phase above 600C. The synthesized BNTS films revealed a random orientation having a strong 117 reflection. The BNTS thin films prepared between 600C and 700C showed well-saturated P-E hysteresis loops with P r of 13–14 μ C/cm2 and E c of 100–110 kV/cm at an applied voltage of 5 V. The surface roughness of the BNTS thin films was improved by Si doping compared with that of undoped Bi3.35Nd0.75Ti3O12 films.  相似文献   

19.
Well-crystallized LiMn2O4 has been synthesized at different calcination temperatures using the melt-impregnation method. The lattice constant of LiMn2O4 increased with increasing calcination temperatures. Li/LiMn2O4cells calcined at lower temperatures (700–800°C) showed excellent cycling performances at room temperature. However, those cells calcined at higher temperature (850–900°C) exhibited abrupt capacity loss in the early stage and very poor cycle retention rate (>65%) after 50 cycles. It was considered that poor cycle performance of the spinels obtained at high temperature resulted from the lithium sublimation and oxygen deficiency during synthetic process. We found that above two factors, lithium sublimation and oxygen deficiency, were the commonly important factors to induce capacity loss in the Li/LiMn2O4 system, especially obtained at high synthetic temperature.  相似文献   

20.
采用硝酸盐-甘氨酸溶液燃烧法合成了(ZrO2)0.87(Sc2O3)0.11(Mn2O3)0.02(11ScSZ-2Mn2O3)粉体,通过X射线衍射仪(XRD)、透射电镜(TEM)、场发射扫描电镜(FESEM)及氮气吸附等手段对粉体进行表征。结果表明,所合成的11ScSZ-2Mn2O3粉体具有单一立方结构,比表面积达28.6m2/g,粒度均匀。非等温和等温烧结测试均表明该粉体具有良好的烧结活性,可在1200℃下烧结致密化。以11ScSZ-2Mn2O3粉体为原料配制电解质粉体浆料,采用浸渍-提拉法在NiO-氧化钇稳定氧化锆(YSZ)阳极基体上制备了电解质薄膜,在1250℃下实现了负载型薄膜的烧结致密化,与La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极组装了单元电池Ni-YSZ/11ScSZ-2Mn2O3/LSCF。该单元电池在中温下以H2为燃料表现出良好的电性能输出,在操作温度为650℃和700℃下的最大输出功率密度分别为0.55W/cm2和0.90W/cm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号