首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many satellite RNAs (sat-RNAs) can attenuate or intensify the symptoms produced by their helper virus. Sat-RNA C, associated with turnip crinkle virus (TCV), was previously found to intensify the symptoms of TCV on all plants in which TCV produced visible symptoms. However, when the coat protein open reading frame (ORF) of TCV was precisely exchanged with that of cardamine chlorotic fleck virus, sat-RNA C attenuated the moderate symptoms of the chimeric virus when Arabidopsis plants were coinoculated with the chimeric virus. Symptom attenuation was correlated with a reduction in viral RNA levels in inoculated and uninoculated leaves. In protoplasts, the presence of sat-RNA C resulted in a reduction of approximately 70% in the chimeric viral genomic RNA at 44 hr postinoculation, whereas the sat-RNA wa consistently amplified to higher levels by the chimeric virus than by wild-type TCV. TCV with a deletion of the coat protein ORF also resulted in a similar increase in sat-RNA C levels in protoplasts, indicating that the TVC coat protein, or its ORF, downregulates the synthesis of sat-RNA C. These results suggest that the coat protein or its ORF is a viral determinant for symptom modulation by sat-RNA C, and symptom attenuation is at least partly due to inhibition of virus accumulation.  相似文献   

2.
Nicotiana benthamiana plants transformed with the coat protein gene of tomato bushy stunt virus (TBSV) failed to elicit effective virus resistance when inoculated with wildtype virus. Subsequently, R1 and R2 progeny from 13 transgenic lines were inoculated with a TBSV mutant containing a defective coat protein gene. Mild symptoms typical of those elicited in nontransformed plants infected with the TBSV mutant initially appeared. However, within 2 to 4 weeks, up to 20% of the transgenic plants sporadically began to develop the lethal syndrome characteristic of wild-type virus infections. RNA hybridization and immunoblot analyses of these plants and nontransformed N. benthamiana inoculated with virus from the transgenic lines indicated that wild-type virus had been regenerated by a double recombination event between the defective virus and the coat protein transgene. Similar results were obtained with a TBSV deletion mutant containing a nucleotide sequence marker, and with a chimeric cucumber necrosis virus (CNV) containing the defective TBSV coat protein gene. In both cases, purified virions contained wild-type TBSV RNA or CNV chimeric RNA derived by recombination with the transgenic coat protein mRNA. These results thus demonstrate that recombinant tombus-viruses can arise frequently from viral genes expressed in transgenic plants.  相似文献   

3.
Different tombusviruses were able to support the replication of either homologous or heterologous defective interfering (DI) RNAs, and those infected plants usually developed typical attenuated symptoms. However, in some helper virus-DI RNA combinations the inoculated plants were necrotized, although they contained a high level of DI RNA, suggesting that the accumulation of DI RNA and the resulting suppression of genomic RNA replication were not directly responsible for the symptom attenuation. Moreover, the 19-kDa protein product of ORF 5, which is known to play a crucial role in necrotic symptom development, accumulated at the same level in the infected plants in the presence of protective homologous DI RNA and in the presence of nonprotective heterologous DI RNA. It was also demonstrated, by chimeric helper viruses, that the ability of heterologous DI RNA to protect the virus-infected plants against systemic necrosis is determined by the 5'-proximal region of the helper virus genome. The results presented suggest that DI RNA-mediated protection did not operate via the specific inhibition of 19-kDa protein expression but, more likely, DI RNAs in protective DI-helper virus combinations specifically interacted with viral products, preventing the induction of necrotic symptoms.  相似文献   

4.
Satellite RNAs (sat-RNAs) are parasites of viruses that can mediate resistance to the helper virus. We previously showed that a sat-RNA (sat-RNA C) of turnip crinkle virus (TCV), which normally intensifies symptoms of TCV, is able to attenuate symptoms when TCV contains the coat protein (CP) of cardamine chlorotic fleck virus (TCV-CPCCFV). We have now determined that sat-RNA C also attenuates symptoms of TCV containing an alteration in the initiating AUG of the CP open reading frame (TCV-CPm). TCV-CPm, which is able to move systemically in both the TCV-susceptible ecotype Columbia (Col-0) and the TCV-resistant ecotype Dijon (Di-0), produced a reduced level of CP and no detectable virions in infected plants. Sat-RNA C reduced the accumulation of TCV-CPm by < 25% in protoplasts while reducing the level of TCV-CPm by 90 to 100% in uninoculated leaves of Col-0 and Di-0. Our results suggest that in the presence of a reduced level of a possibly altered CP, sat-RNA C reduces virus long-distance movement in a manner that is independent of the salicylic acid-dependent defense pathway.  相似文献   

5.
6.
7.
Brome mosaic bromovirus (BMV) and cucumber mosaic cucumovirus (CMV) are structurally and genetically very similar. The specificity of the BMV and CMV coat proteins (CPs) during in vivo encapsidation was studied using two RNA3 chimera in which the respective CP genes were exchanged. The replicative competence of each chimera was analyzed in Nicotiana benthamiana protoplasts, and their ability to cause infections was examined in two common permissive hosts, Chenopodium quinoa and N. benthamiana. Each RNA3 chimera replicated to near wild-type (wt) levels and synthesized CPs of expected parental origin when co-inoculated with their respective genomic wt RNAs 1 and 2. However, inoculum containing each chimera was noninfectious in the common permissive hosts tested. Encapsidation assays in N. benthamiana protoplasts revealed that CMV CP expressed from chimeric BMV RNA3 was capable of packaging heterologous BMV RNA, however, at a lower efficiency than parental BMV CP. By contrast, BMV CP expressed from chimeric CMV RNA3 was unable to package heterologous CMV RNA. These observations demonstrate that BMV CP, but not CMV CP, exhibits a high degree of specificity during in vivo packaging. The reasons for the noninfectious nature of each chimera in the host plants tested and factors likely to affect encapsidation in vivo are discussed.  相似文献   

8.
DIG-labelled sense and antisense cRNA probes were synthesized from cDNA clones of CymMV and ORSV for virus detection in infected plants. A slot-blot hybridization assay was developed using either crude leaf extracts or total RNA from infected leaves. The assay could detect 50 and 250 pg of purified CymMV and ORSV RNA, respectively. As little as 30 mg of Nicotiana benthamiana infected leaves was sufficient to provide positive detection. CymMV and ORSV were detected at 3125 and 625 times dilution of leaf extracts, respectively. The DIG-labelled cRNA probes are stable for more than a year. This method is sensitive, reliable and suitable for large-scale routine testing of plant viruses. By using the two DIG-labelled cRNA probes in situ, CymMV and ORSV were localized in systemically infected leaves and stems of N. benthamiana and orchids.  相似文献   

9.
Full-length complementary DNA (cDNA) copies of genomic RNA1, RNA2, and RNA3 segments of cowpea chlorotic mottle virus (CCMV) strains D, N, and S were synthesized using polymerase chain reaction and were cloned downstream of a T7 RNA polymerase promoter. Mixtures of the homologous in vitro-transcribed RNAs produced typical CCMV symptoms when inoculated on soybean (cv. Bragg) and cowpea (cv. California Blackeye) plants. Using either gel-purified or in vitro-transcribed CCMV RNA components, the pseudorecombinants SSD, SSN, DDS, and NNS were constructed. The properties of these pseudorecombinants were tested by comparing the induced symptoms, virus concentration, and systemic spread. These studies revealed a direct involvement of RNA3 genetic information in necrotic lesion formation and in breakage of CCMV resistance in soybean. Exchanges between RNA1 or RNA2 components further affected the biological features of reassorted CCMV variants. The true nature of the pseudorecombinants was confirmed by reconstitution of the parental strains from the corresponding pseudorecombinant RNA components.  相似文献   

10.
Geminiviruses have unique, twinned icosahedral particles which encapsidate circular single-stranded DNA. Their genomes are composed of either one or two DNA segments. Monopartite geminiviruses absolutely require a functional coat protein (CP) for infectivity, whereas bipartite geminivirus CP null mutants can infect plants systemically. However, we show here that a CP mutant of the bipartite tomato golden mosaic virus (TGMV), which can infect Nicotiana benthamiana systemically, is confined to the inoculated leaves of Nicotiana tabacum or Datura stramonium. We also show that a CP mutant of the related bean golden mosaic virus (BGMV), which can infect beans systemically, is confined to the inoculated leaves of N. benthamiana. In each case, the extent of viral DNA accumulation in inoculated leaves was unaffected by the absence of CP, which suggests that CP is required specifically for systemic movement. The dispensability of CP is correlated with the degree of virus-host adaptation. TGMV is well adapted to N. benthamiana and does not require CP to infect this host systemically, whereas BGMV is poorly adapted to N. benthamiana and requires CP. Analysis of TGMV-BGMV hybrid viruses revealed that the viral genetic background can also affect the dispensability of CP for systemic movement in N. benthamiana. Thus, bipartite geminivirus movement in planta can be resolved genetically into three components: (i) local, cell-to-cell movement, which does not require CP; (ii) CP-dependent systemic movement, which occurs in all hosts tested; and (iii) CP-independent systemic movement, which occurs in hosts to which a given virus is well adapted.  相似文献   

11.
12.
13.
The host range of individual geminiviruses may be quite narrow, and closely related viruses can exhibit distinct host adaptations. Two such bipartite geminiviruses are bean golden mosaic virus (GBMV) and tomato golden mosaic virus (TGMV). In both, the BL1 and BR1 genes are required for the spread of virus infection in plants. We have investigated the contributions of BL1 and BR1 to host-specific phenotypes of BGMV and TGMV by constructing hybrid viruses in which these coding regions were exchanged. Hybrids were assayed on bean, a good host for BGMV, and Nicotiana benthamiana, a good host for TGMV. A BGMV hybrid having TGMV BL1 and BR1 efficiently infected beans, but elicited attenuated symptoms. In N. benthamiana, this hybrid had slightly increased virulence and DNA accumulation relative to wild-type BGMV. A TGMV hybrid having BGMV BL1 and BR1 was virulent in N. benthamiana, but elicited attenuated symptoms. However, this hybrid exhibited no gain of function in beans relative to wild-type TGMV. Hybrid viruses with TGMV BL1 and BGMV BR1 had severely defective phenotypes in either viral or host background. Although exchanging BL1 and BR1 between BGMV and TGMV did not change host range, some host adaptation of these genes is suggested. However, virus-specific compatibility between BL1 and BR1 is of more importance for viability. Thus, these gene products may act in concert to potentiate virus movement.  相似文献   

14.
15.
Tomato bushy stunt virus (TBSV) is a small isometric virus that contains a single-stranded RNA genome with five major genes. In this study, we have analyzed the importance of an additional small sixth open reading frame (ORF) of 207 nucleotides, designated pX, which resides at the 3' end of the genome. Bioassays showed that deletions or additions of nucleotides at the 5' end of the pX gene that were designed to disrupt the ORF, or site-specific inactivation of its start codon, all gave rise to TBSV mutants which were unable to accumulate to detectable levels in cucumber or Nicotiana benthamiana protoplasts. Although these results suggested a role for the putative pX protein, introduction of a premature stop codon in the pX gene had no strong negative effect. However, a comparable mutation that affected the same nucleotides without changing the predicted amino acid sequence greatly reduced RNA accumulation. Therefore, we hypothesize that cis-acting RNA sequences within the pX gene, rather than the predicted protein influence genome accumulation. The requirement of the cis-acting pX ORF sequences appears to be host-dependent because comparisons revealed that subtle pX gene mutations that prohibited accumulation of TBSV RNA in cucumber or N. benthamiana, failed to interfere substantially with replication in Chenopodium quinoa protoplasts or plants. Irrespective of the host, the cis-acting pX gene sequences were dispensable on replicase-deficient RNAs that require helper TBSV for replication in trans. In addition, the pX gene was not essential for in vitro translation of replicase proteins from genomic RNA. These results suggest that neither translation nor polymerase activity of the replicase proteins require pX gene sequences. However, it is possible that very early in the replication cycle of genomic RNA in vivo, the pX gene cis-acting element is essential for some other unidentified function which involves interaction with one or more host components whose composition varies slightly between different plants.  相似文献   

16.
Geminiviruses are plant viruses with circular single-stranded DNA (ssDNA) genomes encapsidated in double icosahedral particles. Tomato leaf curl geminivirus (ToLCV) requires coat protein (CP) for the accumulation of ssDNA in protoplasts and in plants but not for systemic infection and symptom development in plants. In the absence of CP, infected protoplasts accumulate reduced levels of ssDNA and increased amounts of double-stranded DNA (dsDNA), compared to accumulation in the presence of wild-type virus. To determine whether the gene 5 protein (g5p), a ssDNA binding protein from Escherichia coli phage M13, could restore the accumulation of ssDNA, ToLCV that lacked the CP gene was modified to express g5p or g5p fused to the N-terminal 66 amino acids of CP (CP66:6G:g5). The modified viruses led to the accumulation of wild-type levels of ssDNA and high levels of dsDNA. The accumulation of ssDNA was apparently due to stable binding of g5p to viral ssDNA. The high levels of dsDNA accumulation during infections with the modified viruses suggested a direct role for CP in viral DNA replication. ToLCV that produced the CP66:6G:g5 protein did not spread efficiently in Nicotiana benthamiana plants, and inoculated plants developed only very mild symptoms. In infected protoplasts, the CP66:6G:g5 protein was immunolocalized to nuclei. We propose that the fusion protein interferes with the function of the BV1 movement protein and thereby prevents spread of the infection.  相似文献   

17.
The role of the coat protein of potato virus X (PVX) was investigated by site-directed mutation of the coat protein gene. Mutant viruses with in-frame deletions in the 5' end of the coat protein gene were capable of systemically infecting plants, but produced virions with atypical morphology. Viruses with a frameshift mutation near the 5' end or with deletions in the central part of the coat protein gene failed to accumulate at detectable levels, even in the inoculated leaf. In protoplasts, mutants that infected systemically either had a wild-type phenotype or showed a small reduction in accumulation of genomic RNA. The other mutants, which did not accumulate in the inoculated leaf, were unaffected in genomic RNA accumulation 8 hr postinoculation, but at 16 hr and later they accumulated less genomic RNA than wild-type virus. None of the mutations had an effect on accumulation of negative-strand RNA. The data indicate that efficient accumulation and spread of PVX, even in the inoculated leaf, requires coat protein production and encapsidation of the viral RNA.  相似文献   

18.
Infection of Nicotiana benthamiana cells with cymbidium ringspot (CymRSV) and carnation Italian ringspot (CIRV) viruses results in the formation of conspicuous membranous bodies [multivesicular bodies (MVBs)], which develop from modified peroxisomes or mitochondria, respectively. The organelle targeting signal is located in the proteins of 33 kDa (CymRSV) or 36 kDa (CIRV) encoded by ORF 1, which contain an N-terminal hydrophilic portion followed by two predicted hydrophobic transmembrane segments. Biochemical analysis showed that the 33- and 36-kDa proteins are integral membrane proteins. By exchanging small portions of the ORF 1 sequence between the infectious full-length clones of the two viruses, hybrid constructs were obtained of which the in vitro synthesized RNA was inoculated to N. benthamiana plants and protoplasts. The structure of infectious clones suggested that both the N-terminal hydrophilic region and the transmembrane segments of the ORF 1-encoded proteins specify which organelle is involved in the synthesis of MVBs. Mutational analysis of the CIRV 36-kDa protein also suggested the presence of an internal mitochondrial targeting sequence similar to that found in several normal host proteins that are synthesized in the cytoplasm and transported to mitochondria. The CymRSV 33-kDa protein did not contain the obvious consensus signals thought to be characteristic of proteins targeted to peroxisomes, and an mitochondrial targeting sequence motif was not evident.  相似文献   

19.
20.
A full length cDNA copy of the genomic RNA of lettuce mosaic virus (LMV) was constructed under the control of an enhanced CaMV 35S promoter and of the NOS terminator. This construct was found infectious when inoculated to lettuce plants. The intron II of the bean nitrite reductase gene was engineered into the LMV FL cDNA in order to relieve possible deleterious effects of viral sequences to Escherichia coli cells and to evaluate the effects of the presence of the intron on the FL cDNA infectivity. The intron-less FL cDNA was found to be as stable as its intron-containing counterpart in E. coli. Sequence analysis of progeny RNA derived from plants inoculated with the intron-containing FL cDNA demonstrated that the inserted intron was perfectly spliced out. The symptoms induced in lettuce by either the intron-less or the intro-containing constructs were identical to those caused by the wild-type virus. However a slight delay in the establishment of infection in lettuce and a more obvious lag in Nicotiana benthamiana were observed with the intron-containing FL cDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号