首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The tribological properties of various PVD‐deposited coatings (vacuum arc method) have been tested, both single‐layer coatings (TiN, CrN, Ti(C,N), and Cr(C,N)) and multilayer coatings (Cr(C,N)/CrN/Cr and CR(C,N)/(CrN+Cr2N)/CrN/Cr). An unlubricated ball‐on‐disc tribosystem was used in which an Al2O3 ball is pressed against a coated steel disc rotating in the horizontal plane. A novelty of the method is the removal of wear debris from the contact zone using a draught of dry argon. This improves the repeatability of the test results and the stability of the tribological characteristics. It is shown that CrN coatings exhibit the best antiwear properties and Ti(C,N) the worst. Multilayer coatings have better antiwear properties than single‐layer ones. The friction coefficients for CrN and Cr(C,N) coatings are much smaller than for the commonly used TiN. A correlation has also been found between the physical properties of the coatings tested (adhesion of the coating to the substrate assessed in scratch tests, and coating hardness) and their antiwear properties. An improvement in coating‐substrate adhesion results in wear reduction, while greater hardness (causing a coating embrittlement increase and a change in the wear mechanism) brings about greater wear. There is no correlation between the physical properties and the friction coefficients of the coatings tested.  相似文献   

2.
The influence of nanolayer AlTiN/TiN and multilayer nanocomposite TiAlSiN/TiSiN/TiAlN hard coatings on the wear behavior and cutting performance of carbide cutting tools was investigated in face milling of hardened AISI O2 cold work tool steel (∼58 HRC) at dry conditions. Characterization of the coatings was performed using nanoindentation, scratch test, reciprocating multi-pass wear test. The chips forming during cutting process were also analyzed. Results showed that abrasive and oxidation wear are dominant tool failures. The nanolayer AlTiN/TiN coating gives the best adhesion to the substrate, the best wear resistance in machining and thus provides the longest lifetime with carbide inserts.  相似文献   

3.
A titanium nitride (TiN) coating was deposited by magnetron sputter ion plating onto steel and titanium alloy polished substrates. The adhesion of the coating on each substrate material was investigated using a newly developed multimode scratch tester. Progressive loading scratch tests, constant load scratch tests, multiple scratch tests in the same track and indentation tests were all performed. It was shown that the modified scratch tester can be used to identify not only coating detachment during progressive load scratch tests, but also other failure events such as cracking and cohesive damage to the coatings. By using the additional modes of operation, it was possible to study the fracture mechanisms in more detail i.e. chipping in the scratch track was cohesive for the TiN coated steel and adhesive for the TiN coated Ti alloy.  相似文献   

4.
Abstract

Constant load, progressive load and multipass nanoscratch (nanowear) tests were carried out on 500 and 1500 nm TiN coatings on M42 steel chosen as model systems. The influences of film thickness, coating roughness, scratch direction relative to the grinding grooves on the critical load in the progressive load test and number of cycles to failure in the wear test have been determined. Progress towards the development of a suitable methodology for determining the scratch hardness from nanoscratch tests is discussed.  相似文献   

5.
In this paper, the conventional Metco130 coatings, and two kinds of nanostructured coatings (NP and NS coatings) were fabricated by plasma spray with different feed powders. The coatings were evaluated by indentation, scratch and three body abrasive wear tests. The NP coating sprayed with plasma densified feed powder had the highest hardness, crack growth resistance and scratch resistance. Test results exhibited that the nanostructured coatings had greatly improved three body abrasive wear resistance compared with conventional coatings. The three body abrasive wear resistance of NP coatings was about three times that of conventional coatings. The failure mode in scratch tests and wear mechanism of three coatings were also discussed.  相似文献   

6.
Although the applications of TiN and TiCN coatings are extensive, their mechanical and tribological properties are influenced by the substrates in which they are deposited. The present work is focused on the tribological performance of TiN and TiCN coatings on a working tool steel. Besides, adhesion and microhardness tests were carried out. The adhesion performance of both coatings resulted in class 1, according to CEN/TS 1071–8 standard, which allows observing the quality of adhesion. The composite microhardness was investigated by the analysis of relative indentation (β). Pin-on-disk tests were performed in dry and lubricated condition at 100 °C against tungsten carbide (WC). Low friction coefficients of μk = 0.08 for TiN and μk = 0.03 for TiCN were obtained in lubricated conditions. Wear mechanisms were analyzed by scanning electron microscopy (SEM). Abrasive wear was observed as the principal wear mechanism in dry condition, while in lubricated conditions wear signals seem to be scarcely noticeable.  相似文献   

7.
Ti–TiN and TiN–CrN nanomultilayers were thermally stable retaining uniform and sharp layer interfaces up to 24 h at 773 K, without any oxidation or phase transformation accompanying each individual layer. Decreasing the multilayer spacing resulted in an increase in the hardness in both cases. The coating hardness was found to be independent of the substrate type, when applied on HS718, Ti64 and HCHCr substrates. In scratch testing, the multilayers displayed a better resistance to the onset of failure, as compared to the monolayer TiN. The substrate plasticity played an important role in determining the coating failure mode. Self-mated wear tests revealed the CrN–TiN system to exhibit the best wear behaviour, both at room temperature and at 773 K. The Ti–TiN coatings are more accommodative with all three substrates, as compared to TiN–CrN and TiN.  相似文献   

8.
本文对Cr12MoV模具钢TiN涂层的力学性能进行了研究。用XRD等仪器测定了TiN涂层的组织结构和显微硬度、耐磨附着力等性能。  相似文献   

9.
The tribological properties of TiN, MoN, and TiN/MoN coatings have been investigated. It has been shown that, for multilayer (alternate) TiN/MoN coatings, a maximum hardness reaches 29–31 GPa that is significantly less than the hardness of MoN coatings (36.0–40.2 GPa) when changing the deposition conditions. MoN coatings possess lower coefficients of friction compared to TiN coatings, in particular at the initial stages of a scratch test. Two mechanisms of destruction are revealed by the adhesion tests, i.e., a cohesive failure with a minimum critical loading L C1 and an adhesive test (plastic abrasion) with the appearance of a first crack L C2. The resistance of multilayer (nanoscale) nanostructured TiN/MoN coatings with a total thickness of up to 8 μm is greater than that of TiN coatings.  相似文献   

10.
The two-body abrasive wear of electroless nickel (EN), EN-silicon carbide, and EN-alumina composite coatings have been investigated using a scratch test with a diamond indenter. The coatings were heat treated at temperatures of 100–500° C. The hardness of the coatings increased with heat treatment temperature from 500 HV100 for the as-deposited condition to 1008 HV100 when fully hardened. Scratch testing showed that the as-deposited coating had scratch tracks with a high degree of plasticity, signs of microploughing and tensile cracking and was characterised as a ductile failure. On the other hand, the heat-treated coatings showed chipping and cracking on the edge of the scratch tracks, failing in a brittle manner. The heat-treated EN-silicon carbide coatings, however, exhibited no cracking nor chipping, believed to be due to its higher fracture toughness than the other heat-treated coatings, attributable to its lower phosphorus content. The volume of material removed from the silicon carbide scratch track was 1/3 of the volume removed from the steel substrate at a 20 N load, and showed the best wear/ scratch resistance of any of the coatings tested.  相似文献   

11.
Cr–N coatings were deposited on austenitic stainless steel, X6CrNiTi18-10, by means of the cathodic arc evaporation method at three substrate temperatures: 200 °C, 350 °C and 500 °C. All coatings were found to have a composition of Cr(N), CrN and Cr2N. The substrate temperature was found to have an influence on the hardness and Young's modulus of the Cr–N coatings. The investigation of nanocrystalline Cr–N coatings resistance to cavitation was performed in a cavitation tunnel with a slot cavitator and tap water as the medium. The estimated cavitation resistance parameters of the coatings were the incubation period of damage and total mass loss. It was found that the optimal coating cavitation resistance was deposited at 500 °C. The incubation period for the 500 °C deposition coating was the same as that of the uncoated X6CrNiTi18-10 steel, but the total mass loss was significantly lower than on the uncoated specimen. The scanning electron microscope analysis indicated that the damage process of the Cr–N coating mainly originates from the plastic deformation of the steel substrate–hard coating system, which appears by “micro-folding” of the surface. An increase of tensile stresses at the top of micro-folds initiates micro-cracks and delamination of Cr–N coating. The results of the investigation and the analysis indicate that the factors mainly responsible for cavitation resistance of the steel substrate/hard coating system are resistant to plastic deformation of the total system and coating adhesion.  相似文献   

12.
A micro-scale abrasive wear test, based on ball-cratering, has been used to evaluate the wear resistance of duplex and non-duplex (Ti,Al)N, TiN and Cr–N coatings. The term duplex is used here when plasma nitriding is followed by PVD coating. Coatings without the plasma nitriding stage are termed single-layered. Coating properties were evaluated by surface profilometry, hardness and scratch testing. All duplex coatings showed higher micro-abrasive wear resistance than their single-layered counterparts, with the duplex (Ti,Al)N coating achieving the best performance. After a certain number of ball revolutions, the coating material became worn through, exposing the substrate material. After this point, the presence of a hard nitrided case diminished the scratching action of the SiC abrasive particles. The experimental results also indicate that the choice of the PVD coating plays an important role in improving the micro-abrasive wear resistance. Apart from single-layered and duplex Cr–N coatings, all the other coating systems provided a higher micro-abrasive wear resistance than the uncoated substrate (hardened AISI H13 steel). The poor abrasive wear resistance recorded for the single-layered and duplex Cr–N coatings could be attributed to the hardness of the Cr–N being much lower than that of the SiC abrasive particles, which caused tearing of the coating with subsequent delamination. The wear pattern observed was found to change from surfaces characterised by grooves (uncoated substrate, single-layered TiN and Cr–N systems and duplex Cr–N system) to surfaces which exhibited multiply indented surfaces (single-layered and duplex (Ti,Al)N systems), indicating a transition between wear mechanisms. This transition was found to be dependent on the ratio between the hardness of the SiC abrasive particles and surface (coating) or subsurface hardness. By decreasing this ratio, the ability of the SiC abrasive particles to scratch the composite surface was reduced and the resistance to micro-scale abrasion was improved.  相似文献   

13.
The mechanical and triboengineering characteristics of nanocomposite Ti-Zr-Si-N and Ti-Si-N coatings are studied and the force of adhesion of the coatings is determined. It is shown that the Zr-Ti-Si-N coatings possess stronger wear resistance and lower friction coefficient at 500°C compared with TiN and Ti-Si-N coatings.  相似文献   

14.
采用真空离子镀的方法在304不锈钢基体上喷涂厚度为3μm的TiN/Ti薄层,利用硬度计、三维形貌仪、划痕试验仪对涂层基本力学性能进行分析,通过球盘试验机分析涂层试样的摩擦磨损性能,根据波箔轴承性能测试实验台的测试结果:研究TiN/Ti涂层对基体表面耐磨减摩性能的影响。研究结果表明:TiN涂层硬度可达HV1500,是基材硬度的5.5倍;TiN/Ti涂层平均摩擦因数为0.23,相对不锈钢304基材的平均摩擦因数0.71,降低了68%,磨损量也仅为基材的18.75%;GCr15与PTFE对磨的最大摩擦力矩可达2.4 N·mm,而TiN/Ti与PTFE对磨的最大摩擦力矩仅为1 N·mm,仅为GCr15的41.7%。TiN/Ti涂层表现出了优异的承载能力和耐磨减摩性能。  相似文献   

15.
超薄类金刚石膜纳米摩擦性能研究   总被引:3,自引:0,他引:3  
使用原子力显微镜对由微波等离子体电子回旋共振化学气相沉积技术制备的超薄类金刚石薄膜的纳米摩擦性能进行了研究。结果表明:氢化非晶碳膜(a-C:H)的摩擦力和外加载荷基本成线性关系,可以使用修正的Amonton公式进行表征;厚度在64.9nm以下薄膜的微观承载性能和膜厚存在明显的正比例关系。通过分析磨损深度和循环次数之间的关系以及对磨损区域的导电性研究,表明a-C:H膜表层的微观承载性能较其内层相差很大,表面存在着一层软膜。  相似文献   

16.
Thin hard coatings in the thickness range of only a few micrometers deposited by physical vapour deposition (PVD) on components or tools can improve the friction and wear properties by several orders of magnitude. A 2 μm thick TiN (E=300 GPa) coating on a high-speed steel substrate with a bond layer at the interface between the coating and the substrate was modelled by micro-level three-dimensional finite-element method (3D FEM) in order to optimise a coated surface with regard to coating fracture. Both compliant low modulus (E=100 GPa) and stiff high modulus (E=500 GPa) bond layers at the coating/substrate interface of 200 and 500 nm thickness were investigated. First principal stresses were simulated for scratch test geometry in the load range of 7.5-15 N. Very high stress concentrations of above 5700 MPa tensile stresses were observed in the bond layer just behind the contact zone for the stiffer bond layer. The stiff bond layer generated 5 times higher tensile stress maxima compared to the compliant bond layer. There was approximately 3.5 times larger strain in the compliant bond layer compared to the stiff bond layer. The general coating design advice based on this exercise is that when a bond layer is used e.g. for coating/substrate adhesion improvement should the bond layer be less stiff than the coating not to generate high and critical tensile stresses. The thickness of the bond layer may vary and is not critical with respect to generated stresses in the surface.  相似文献   

17.
Y. Iwai  T. Miyajima  T. Matsubara  S. Hogmark 《Wear》2006,261(1):112-118
In this paper, it is proposed to use a new type of solid particle impact test (slurry jet) to swiftly evaluate wear properties of thin, single layered or multilayered coatings. By the slurry jet, 1.2 μm alumina particles were impacted at high velocity perpendicular to thin PVD coatings of TiN deposited on high speed steel substrate materials under various substrate temperatures. Since the coatings have a much higher wear resistance than the substrate material, the wear rate increases significantly to the higher level of the HSS material when the coatings are penetrated. This is utilized in the quantification of the assessment of coating wear. A ranking of wear resistance and correlations to the coating surface hardness measured by nano-indentation tests, and coating morphology and structures are given and discussed. The TiN deposited under the highest substrate temperature proved to have the highest wear resistance although it had a relatively low hardness. The wear rate of the TiN coatings varies with the orientation of grains, that is, the {1 1 1} orientation that dominates for the high temperature deposition shows a higher wear resistance than the {1 0 0} orientation, which corresponds with the cleavage fracture behavior. Thus, it can be recommended as a screening test when evaluating coatings and coated materials.  相似文献   

18.
残余应力是制约物理气相沉积(Physical vapor deposition,PVD)硬质薄膜厚度的关键因素。采用多弧离子镀技术在高速钢基体上制备了厚度从3.7 m到15.5 m的TiN薄膜,结合曲率法和有限元法研究残余应力及结合性能随膜厚的变化规律。结果表明,随着膜厚的增加,基片弯曲程度加剧,而薄膜平均残余应力降低;膜层内残余应力的整体水平决定了界面切应力大小,薄膜结合性能随界面切应力的增加而降低。增加基体偏压、降低工作气压均导致薄膜内部残余应力的升高。当残余压应力较高时,TiN薄膜具有细小、致密的柱状晶结构,并呈现(111)择优取向,薄膜硬度及断裂韧度较高,耐磨性能良好。研究结果提示我们,通过残余应力的调控可提高硬质薄膜的力学特性。  相似文献   

19.
Abstract

Multifunctional coatings, widely used in tribological applications, have their properties strongly influenced by the interaction of the system coating/substrate. The use of multilayered coatings has been pointed out as a solution for the problem of high internal stresses that can be generated in coated systems, in particular in the case of soft substrates. In multilayered coatings, a decrease in the stress gradient between substrate and coating improves adhesion. Moreover, the thickness of the coating has shown a strong influence on the tribological behaviour of the coated system. This paper, through widely used and efficient techniques, seeks to assess the influence of the thickness of different layers (DLC and CrN) on the response of a multifunctional coating. Si rich DLC and CrN coatings with different thicknesses were deposited on a steel substrate (AISI 1020) by Plasma Enhanced Magnetron Sputtering (PECVD). Scanning electron microscopy (SEM) and Raman spectroscopy (RS) were used in order to characterize the chemical composition and microstructure of the coatings. Instrumented indentation and scratch test techniques were used to measure hardness, elastic modulus, and adhesion of each layer. Critical loads were determined by visual analysis, using SEM in conjunction with the curves obtained in the scratch tests. The evaluation of the effect of the thicknesses of the layers allowed an optimised design of the multifunctional coated systems with improved durability.  相似文献   

20.
利用非对称双极脉冲磁控溅射技术在20CrNiMo钢表面制备了TiN/ZrN多层薄膜,利用扫描电子显微镜和原子力显微镜观察了薄膜的截面和表面形貌,用划痕仪测试了薄膜与基体的结合力,通过球-盘摩擦磨损试验机对薄膜的摩擦学性能进行了研究。结果表明:制备的TiN/ZrN多层薄膜厚度约为2.1μm,薄膜均匀且致密,表面粗糙度为13.63nm;薄膜与基体结合较牢固,临界载荷达到51.0N;薄膜具有优良的减摩性,摩擦因数为0.16,较基体20CrNiMo钢的0.33明显减小,使该钢的耐磨性能得到提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号