首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用超高分子量PET进行干-湿法纺丝是目前制取高强度高模量纤维的一种重要方法。本文对超高分子量PET拉伸处理的条件以及纤维的结构性能进行了研究,认为一道拉伸应该采用低速度冷拉的方法;二道拉伸后的纤维结构完整,强度提高。  相似文献   

2.
<正> 一 高强、高模纤维的纺丝方法 1.表面成长纺丝 最近英国Bristol大学的Keller发表了用高分子量聚乙烯溶液,以表面成长纺丝方法,制得了强度为4.0GPa、模量为145GPa的高强度、高模量纤维的文章。现将纺丝装置,纺丝方法及纤维性质介绍如下。  相似文献   

3.
采用牌号为Ultem 1010的聚醚酰亚胺(PEI)切片进行熔融纺丝,制备PEI纤维,探讨了PEI熔融纺丝的可纺性,重点研究了热拉伸工艺中拉伸倍数和拉伸温度对PEI纤维结构和性能的影响。结果表明:PEI具有良好的耐热性和较宽的加工温度范围,适合熔融纺丝;控制PEI的纺丝温度在340~350℃,卷绕速度在250~300 m/min,所得纤维的均匀性和稳定性较好;热拉伸不能促进PEI纤维结晶,无论拉伸与否,PEI纤维的结构都是无定形的;随着拉伸倍数的增大和拉伸温度的提高,PEI纤维的断裂强度和声速值都呈现出先上升后下降的趋势,在拉伸温度为220℃、拉伸倍数为3.0时,PEI纤维力学性能最好,其断裂强度达到2.6 cN/dtex;PEI纤维初始热分解温度为460.3℃,800℃时纤维的质量保持率为54.74%,具有良好的热稳定性。  相似文献   

4.
首先采用熔融纺丝工艺制备聚甲醛(POM)初生纤维,然后采用二级热箱对初生纤维进行热拉伸及热定型,制备高强度POM纤维;根据POM初生纤维的熔融结晶曲线和等温结晶性能,确定了初生纤维的热拉伸温度;研究了拉伸倍数对纤维力学性能、结晶度和取向度的影响。结果表明:POM初生纤维的热拉伸温度即第一级热箱温度为155℃,热定型温度即第二级热箱温度为120℃;POM纤维的拉伸强度和结晶度随拉伸倍数的增大先增加后降低,初生纤维经9倍拉伸时均达到最大;POM纤维取向度随拉伸倍数的增加而增加,初生纤维经9倍拉伸后趋于稳定;POM初生纤维经9倍拉伸时,所得POM纤维的拉伸强度达到最大值为1.23 GPa,断裂伸长率为21.07%。  相似文献   

5.
最新专利     
<正>一种高强度、高模量、高熔点PVA纤维及其制造方法公开号CN102337605A/公开日2012-02-01/申请人安徽皖维高新材料股份有限公司一种高强度、高模量、高熔点PVA纤维是由含硼凝胶湿法纺丝法制造,断裂强度大于等于13.5 cN/dtex,模量大于等于320 cN/dtex,熔点大于等于108℃,总拉伸倍数达13.0~14.5。本产品性能优良,特别适用于高端工业领域的应用。  相似文献   

6.
目前,柔性链聚合物所制成的高强度高模量纤维的典型代表为超高相对分子质量聚乙烯(UHMW—PE)纤维、超高相对分子质量聚乙烯醇(UHMW—PVA)纤维。目前,制得PVA纤维的最高模量为115GPa,但迄今为止商用PVA纤维的最高强度仅为2.5GPa左右。PVA可以形成分子内和分子间氢键,使其熔点高达245℃,高于PE纤维。PVA要达到100GPa的高模量,仅需20倍的超拉伸,而PE纤维则需要200-300倍的超拉伸。作为理想的石棉、玻璃纤维取代品以及在国防军工中的防弹材料的应用,高强高模的PVA纤维的技术发展很快,其经济效益与社会效益正在被不断的发掘之中。目前,国内外开发高强高模PVA纤维主要从以下三方面进行:制备UHMW—PVA;制备高立构规整度的PVA;利用新型纺丝工艺技术制备高性能的PVA纤维。  相似文献   

7.
化纤概况     
971001高性能纤维Wardl,M,…;Advanees in Fibre Seienee,1992,P.1十(英)介绍了关于从易溶的液晶聚合物或拉伸柔性聚合物至很高的拉神比制取高模量高强度纤维的决定性因素,也包括其潜在性质和结构方面的内容。一份描绘从高固有刚性和强度的刚性链液晶聚合物到柔性链聚合物发展高性能聚合物纤维的略图强调,为改善拉伸性质,需要特殊的加工条件,并综述了最近关于聚合物纤维结构的研究和结构对于提高拉伸性能的关系。概述了最近发展的高性能纤维,聚乙烯纤维,包括高模量熔纺纤维,高模量高强度凝胶纺纤维及性质;液晶聚合物纤维;包括易溶的液晶…  相似文献   

8.
采用石蜡增塑高相对分子质量PE后纺丝并经高倍拉伸制备高强度模纤维。此法比凝胶纺丝工艺简单,产率高、成本低。该法研究高相对分子质量PE和石蜡共混初生纤维的萃取拉伸工艺和拉伸纤维的结构性能。  相似文献   

9.
<正>本发明涉及了一种高强高模量石墨烯/尼龙6纤维及制备方法,属于高强度纤维领域。该具有高强度高模量的石墨烯/尼龙6纤维,是由改性石墨烯与己内酰胺原位聚合并经高速熔融纺丝得到;石墨烯/尼龙6纳米复合材料由改性石墨烯与己内酰胺和各种助剂复合得到。本发明得到的石墨烯/尼龙6纳米复合材料熔融指数在15~25之间(2.16kg,250℃),能够  相似文献   

10.
《合成纤维》2017,(1):7-10
以增黏聚酯切片为原料,经优化的熔融纺丝工艺制备出一种新型高强度安全带用涤纶工业丝,利用X射线衍射、纤维强伸仪对纤维进行了测试表征,并重点探讨了纺丝温度、侧吹风风速以及总拉伸倍率对纤维性能的影响。结果表明:纺丝拉伸后纤维结晶度高达68.9%,优化的纺丝温度为291℃,侧吹风风速为0.5 m/s,总拉伸倍率为5.9,生产纤维的纤度为(1 691±9)dtex,断裂强度≥8.20 cN/dtex,断裂伸长率为14%±2%。由于该产品具有强度高、毛丝数量少的特点,已在高性能汽车安全带领域得到了应用。  相似文献   

11.
差别化纤维     
《化纤文摘》2012,(4):28-30
20124186凝胶纺丝生产高强度PVA-SWCNT复合纤维Xu Xue Zhu…;Carbon,2010,48(7),p.1977(英)由几乎无缺陷的单壁碳纳米管(SWCNT)增强的聚乙烯醇(PVA,D.P.为1500)制成高强度复合纤维。SWCNT分散在质量分数10%的PVA-二甲基亚砜溶液中,使用机械均化器,降低SWCNT聚集物尺寸至较小的束状。均匀的分散物采取凝胶纺丝,挤出进入冷的甲酸中形成纤维,随即热拉伸。含质  相似文献   

12.
探究了聚己二酸对苯二甲酸丁二醇酯(PBAT)熔体静电纺性能,并研究了熔体微分静电纺工艺参数与PBAT纤维性能之间的关系。结果表明,随着纺丝温度的升高,纤维直径减小,纤维直径分布呈先减小后增大的趋势;随着纺丝电压的升高,纤维直径减小且分布均匀,纤维膜力学性能逐渐提高;当纺丝距离为9 cm,纺丝温度为260 ℃,纺丝电压为45 kV时,制备的纤维细度及均匀度最佳,其直径为4.31 μm,直径分布标准差为0.76,纤维膜拉伸强度为9.9 MPa、断裂伸长率为111.2 %。  相似文献   

13.
采用冻胶纺丝法制备超高分子质量聚丙烯纤维(UHMWPP),并在不同的拉伸温度下对其进行拉伸。研究了在相同的拉伸倍率下,拉伸温度对UHMWPP纤维结晶性能、热性能的影响。结果表明:UHMWPP纤维结晶晶体间存在很多间隙;纤维的结晶性能和耐热性能都随拉伸温度的提高而提高。  相似文献   

14.
硼酸和三聚氰胺以一定配比合成氮化硼前驱体高聚物.将该前驱体超声溶于甲酸溶液,在静电纺丝电压25 kV,正负极距离18 cm的条件下,可通过静电纺丝法制备直径均匀的纤维.将该电纺纤维放入马弗炉,以10℃/min升温速率加热至600℃和850℃,保温不同时间,可制备白色BN纤维.利用SEM、TEM、TG-DSC、XPS和IR对BN纤维的结构,性能进行详细表征.结果表明,前驱体高聚物具有良好的静电纺丝性能,提高煅烧温度、延长煅烧时间可制备较纯的氮化硼纤维.  相似文献   

15.
利用纺粘非织造设备制备锦纶6(PA 6)粘合纤维,研究了泵供量、拉伸气流强度和纺丝温度对PA6粘合纤维结构和力学性能的影响。结果表明:纤维结晶度随着拉伸气流强度的增加而增加;纤维直径随着泵供量减小和拉伸气流强度增加而减小;纤维的断裂强度随着拉伸气流强度的增加而增加,纤维的断裂伸长率随之逐渐减小;泵供量和纺丝温度对纤维的结构和力学性能影响较小;当纺丝温度为240℃,泵供量为96m L/min,拉伸风电机频率为40 Hz时,所制得的PA 6纤维直径为26.7μm,断裂强度为2.36 c N/dtex,断裂伸长率为1 760.2%。  相似文献   

16.
通过熔融纺丝法制备了生物可降解左旋聚乳酸(PLLA)纤维,对纤维进行了拉伸和热定型等后处理,用电子单纤维强力仪和X-射线衍射仪研究了PLLA纤维的力学性能和结晶性能,讨论了纺丝温度、拉伸倍数、定型时间和定型温度等对纤维力学性能的影响。结果表明,当纺丝温度为200℃时,纤维可纺性最好。当拉伸倍数为4倍,热定型温度为60℃,定型时间为30min时,PLLA纤维具有最佳的力学性能,其晶区具有α晶型结构。  相似文献   

17.
对高相对分子质量聚对苯二甲酰对苯二胺(PPTA)树脂进行了表征,开展了添加超高相对分子质量PPTA树脂与普通相对分子质量PPTA树脂共混进行液晶纺丝得到高强度和高模量芳纶的结构表征与性能试验,同时对芳纶的力学性能与其PPTA树脂相对分子质量的关系进行了研究。结果表明,芳纶的力学性能与其PPTA聚合体的相对分子质量紧密相关,如果PPTA树脂的相对分子质量不够高,加上液晶纺丝和高模量热处理过程分子链的进一步降解,高模量芳纶的制备就无法实现。在系统研究PPTA聚合反应规律,特别是聚合诱导相互转变规律及其影响因素研究基础上,通过调控连续聚合的反应条件,在1 000 t/a连续聚合生产线上制备出比浓对数粘度高达9.2 dl/g的超高相对分子质量PPTA树脂;用超高相对分子质量PPTA树脂与通用级PPTA树脂(比浓对数粘度6.8 dl/g)混合进行纺丝,制备出高强度的芳纶,并进一步热处理得到高强度和高模量的芳纶。  相似文献   

18.
通过硫酸和硝酸混合溶液对碳纳米管进行酸化改性,采用傅里叶红外光谱证实在碳纳米管上成功引入了羧基、羟基亲水基团,提高了其在水中的分散均匀性。将碳纳米管分散液与海藻酸钠水溶液混合形成均匀的海藻酸钠/碳纳米管纺丝原液,采用湿法纺丝的工艺,以针管注射的方式将纺丝原液注入到氯化钙的凝固浴中,制备得到海藻酸钠/碳纳米管复合纤维。采用场发射扫描电镜观察了复合纤维的形貌,并分析了不同碳纳米管负载量的复合纤维力学性能。结果表明:当碳纳米管负载量达到11%时,复合纤维拉伸强度达到最大值410 MPa,有效提高了海藻酸钠纤维的拉伸强度。  相似文献   

19.
刘玲  周彬  周红涛 《塑料工业》2022,(2):174-178
将质量分数为10%的聚乙烯醇(PVA)水溶液与聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT/PSS)水分散液共混,经过恒温高速搅拌,制备出均匀的PVA/PEDOT/PSS共混纺丝液,随后通过湿法纺丝制备出PVA/PEDOT/PSS纤维。借助旋转式流变仪探究不同PEDOT/PSS质量分数的纺丝液在纺丝温度的差异下,纺丝液的流变特性与可纺性的关系。采用高阻计和电子单纤维强力仪对成品纤维的导电性能和力学性能进行测试表征。使用扫描电子显微镜对不同PEDOT/PSS质量分数的纤维表面形貌进行表征。结果表明,PEDOT/PSS质量分数在0%~9.09%的质量分数范围内,随着纺丝液中PEDOT/PSS质量分数的增加,纺丝液黏度增大,PVA/PEDOT/PSS纺丝液可纺性呈先提高后降低的趋势。在30~90℃的范围内,随着纺丝体系温度的提高,PVA/PEDOT/PSS纺丝液可纺性呈先升高后降低的趋势;随着PEDOT/PSS质量分数的提高,PVA/PEDOT/PSS纤维的电导率逐渐升高,拉伸强度逐渐增加,拉伸断裂伸长率逐渐降低。  相似文献   

20.
最新专利     
<正>耐高温高强度聚砜纤维及其制备方法公开号CN107630256A/公开日2018-01-26/申请人四川斯派恩新材料有限公司本发明提供一种聚砜纤维的制备方法:将聚砜类材料先使用溶剂溶解形成纺丝液,通过喷丝头形成细流,并在细流表面形成微孔结构;然后采用阶梯式升温的方式加热除去溶剂,再经过拉伸与加热的方式使微孔消失,得到聚砜纤维。本发明的高性能聚砜纤维具有高的力学性能、热稳定性及耐久性,安全使用温度为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号