首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ROMK channels (Kir1.1) are members of the superfamily of inward rectifier potassium channels (Kir) and represent the channels underlying K+ secretion in the kidney. As their native counterparts, Kir1.1 channels are gated by intracellular pH, with acidification leading to channel closure. Although a lysine residue (Lys80) close to the first hydrophobic segment M1 has been identified as the pH sensor, little is known about how opening and closing of the channel is accomplished. Here we investigate the gating process of Kir1.1 channels exploiting their state-dependent modification by water-soluble oxidants and sulfhydryl reagents. Mutagenesis of all intracellular cysteines either alone or in combination revealed two residues targeted by these reagents, one in the N terminus (Cys49) and one in the C terminus (Cys308) of the channel protein. Both sites reacted with the thiol reagents only in the closed state and not in the open state. These results indicate that pH-dependent gating of Kir1.1 channels involves movement of protein domains in both N and C termini of the Kir1.1 protein.  相似文献   

2.
The effects of melatonin on circadian pacemaker activity in the central nervous system may be the result of melatonin receptor activation of G-protein coupled potassium channels which inhibit the action potential firing of neurons. Xenopus laevis and human1a melatonin receptors stimulated heteromeric G-protein activated inwardly rectifying potassium channels (Kir3.1/Kir3.2) when expressed in vitro in oocytes. Pertussis toxin reduced iodo-melatonin (87.1% reduction) and melatonin (90.3% reduction) stimulated currents in a time-dependent manner for cells expressing X. laevis receptors. A similar pertussis toxin inhibition was observed for human melatonin receptors (melatonin, 78.9% reduction). This suggests a potential role for heteromeric Kir3 channels in the receptor-mediated actions of melatonin in vivo.  相似文献   

3.
4.
A PCR-based cloning strategy was used to identify novel subunits of the two-transmembrane domain inward rectifier potassium channel family from rat brain, heart, and skeletal muscle. When expressed in Xenopus oocytes, two of these clones (Kir4.1 and Kir2.3) gave rise to inwardly rectifying potassium currents. Two-electrode voltage clamp commands to potentials negative to EK evoked inward potassium-selective currents which rapidly reached a peak amplitude and then relaxed to a steady-state level. Differences in the extent of current relaxation, the degree of rectification, and the voltage-dependent block by external cesium were detected. Two other members of this family (Kir5.1 and Kir3.4) did not produce macroscopic currents, when expressed by themselves, yet both subunits modified the currents when coexpressed with other specific members of the Kir family. Expression of chimeric subunits between Kir4.1 and either Kir5.1 or Kir3.4 suggested that the transmembrane domains determine the specificity of subunit heteropolymerization, while the C-terminal domains contribute to alterations in activation kinetics and rectification. Expression of covalently linked subunits demonstrated that the relative subunit positions, as well as stoichiometry, affect heteromeric channel activity.  相似文献   

5.
Potassium conduction through unblocked inwardly rectifying (IRK1, Kir2.1) potassium channels was measured in inside-out-patches from Xenopus oocytes, after removal of polyamine-induced strong inward rectification. Unblocked IRK1 channel current-voltage (I-V) relations show very mild inward rectification in symmetrical solutions, are linearized in nonsymmetrical solutions that bring the K+ reversal potential to extreme negative values, and follow Goldman-Hodgkin-Katz constant field equation at extreme positive E alpha. When intracellular K+ concentration (KIN) was varied, at constant extracellular K+ concentration (KOUT) the conductance at the reversal potential (GREV) followed closely the predictions of the Goldman-Hodgkin-Katz constant field equation at low concentrations and saturated sharply at concentrations of > 150 mM. Similarly, when KOUT was varied, at constant KIN, GREV saturated at concentrations of > 150 mM. A square-root dependence of conductance on KOUT is a well-known property of inward rectifier potassium channels and is a property of the open channel. A nonsymmetrical two-site three-barrier model can qualitatively explain both the I-V relations and the [K+] dependence of conductance of open IRK1 (Kir2.1) channels.  相似文献   

6.
Insulin secretion from pancreatic beta cells is coupled to cell metabolism through closure of ATP-sensitive potassium (KATP) channels, which comprise Kir6.2 and sulfonylurea receptor (SUR1) subunits. Although metabolic regulation of KATP channel activity is believed to be mediated principally by the adenine nucleotides, other metabolic intermediates, including long chain acyl-CoA esters, may also be involved. We recorded macroscopic and single-channel currents from Xenopus oocytes expressing either Kir6.2/SUR1 or Kir6. 2DeltaC36 (which forms channels in the absence of SUR1). Oleoyl-CoA (1 microM) activated both wild-type Kir6.2/SUR1 and Kir6.2DeltaC36 macroscopic currents, approximately 2-fold, by increasing the number and open probability of Kir6.2/SUR1 and Kir6.2DeltaC36 channels. It was ineffective on the related Kir subunit Kir1.1a. Oleoyl-CoA also impaired channel inhibition by ATP, increasing the Ki values for both Kir6.2/SUR1 and Kir6.2DeltaC36 currents by approximately 3-fold. Our results indicate that activation of KATP channels by oleoyl-CoA results from an interaction with the Kir6.2 subunit, unlike the stimulatory effects of MgADP and diazoxide which are mediated through SUR1. The increased activity and reduced ATP sensitivity of KATP channels by oleoyl-CoA might contribute to the impaired insulin secretion observed in non-insulin-dependent diabetes mellitus.  相似文献   

7.
Strongly inwardly rectifying potassium channels of the Kir 2 subfamily (IRK1, IRK2, and IRK3) are involved in maintenance and modulation of cell excitability in brain and heart. Electrophysiological studies of channels expressed in heterologous systems have suggested that the pore-conducting pathway contains four subunits. However, inferences from electrophysiological studies have not been tested on native channels and do not address the possibility of nonconducting auxiliary subunits. Here, we investigate the subunit stoichiometry of endogenous inwardly rectifying potassium channel Kir 2.2 (IRK2) from rat brain. Using chemical cross-linking, immunoprecipitiation, and velocity sedimentation, we report physical evidence demonstrating the tetrameric organization of the native channel. Kir 2.2 was sequentially cross-linked to produce bands on SDS-polyacrylamide gel electrophoresis corresponding in size to monomer, dimer, trimer, and three forms of tetramer. Fully cross-linked channel was present as a single band of tetrameric size. Immunoprecipitation of biotinylated membranes revealed a single band corresponding to Kir 2.2, suggesting that the channel is composed of a single type of subunit. Hydrodynamic properties of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid-solubilized channel were used to calculate the molecular mass of the channel. Velocity sedimentation in H2O or D2O gave a sharp peak with a sedimentation coefficient of 17.3 S. Gel filtration yielded a Stokes radius of 5.92 nm. These data indicate a multisubunit protein with a molecular mass of 193 kDa, calculated to contain 3.98 subunits. Together, these results demonstrate that Kir 2.2 channels are formed by the homotetrameric association of Kir 2.2 subunits and do not contain tightly associated auxiliary subunits. These studies suggest that Kir 2.2 channels differ in structure from related heterooctomeric ATP-sensitive K channels and heterotetrameric G-protein-regulated inward rectifier K channels.  相似文献   

8.
Sulfonylureas stimulate insulin secretion from pancreatic beta-cells by closing ATP-sensitive K+ (K(ATP)). The beta-cell and cardiac muscle K(ATP) channels have recently been cloned and shown to possess a common pore-forming subunit (Kir6.2) but different sulfonylurea receptor subunits (SUR1 and SUR2A, respectively). We examined the mechanism underlying the tissue specificity of the sulfonylureas tolbutamide and glibenclamide, and the benzamido-derivative meglitinide, using cloned beta-cell (Kir6.2/SUR1) and cardiac (Kir6.2/SUR2A) K(ATP) channels expressed in Xenopus oocytes. Tolbutamide inhibited Kir6.2/SUR1 (Ki approximately 5 micromol/l), but not Kir6.2/SUR2A, currents with high affinity. Meglitinide produced high-affinity inhibition of both Kir6.2/SUR1 and Kir6.2/SUR2A currents (Kis approximately 0.3 micromol/l and approximately 0.5 micromol/l, respectively). Glibenclamide also blocked Kir6.2/SUR1 and Kir6.2/SUR2A currents with high affinity (Kis approximately 4 nmol/l and approximately 27 nmol/l, respectively); however, only for cardiac-type K(ATP) channels was this block reversible. Physiological concentrations of MgADP (100 micromol/l) enhanced glibenclamide inhibition of Kir6.2/SUR1 currents but reduced that of Kir6.2/SUR2A currents. The results suggest that SUR1 may possess separate high-affinity binding sites for sulfonylurea and benzamido groups. SUR2A, however, either does not possess a binding site for the sulfonylurea group or is unable to translate the binding at this site into channel inhibition. Although MgADP reduces the inhibitory effect of glibenclamide on cardiac-type K(ATP) channels, drugs that bind to the common benzamido site have the potential to cause side effects on the heart.  相似文献   

9.
The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel.  相似文献   

10.
Possible heteromultimer formation between Kv- and Kir-type K+ channels was investigated, in connection with the known functional diversity of K+ channels in vivo. Voltage-clamp experiments were performed on Xenopus oocytes, either injected with concatenated Kir2.1-Kv1.1 mRNA, or co-injected with Kv1.1 and Kir2.1 mRNA. K+ currents could be approximated by the algebraic sum of the 2 K+ current types alone. The tandem construct did not show functional expression, although it could be detected by Western blotting. We conclude that Kv1.1 and Kir2.1 alpha-subunit proteins fail to assemble and do not contribute functional diversity to K+ channels.  相似文献   

11.
Interactions of Ba2+ with K+ and molecules contributing to inward rectification were studied in the cloned inward rectifier K+ channels, Kir2.1. Extracellular Ba2+ blocked Kir2.1 channels with first-order kinetics in a Vm-dependent manner. At Vm more negative than -120 mV, the Kd-Vm relationship became less steep and the dissociation rate constants were larger, suggesting Ba2+ dissociation into the extracellular space. Both depolarization and increasing [K+]i accelerated the recovery from extracellular Ba2+ blockade. Intracellular K+ appears to relieve Ba2+ blockade by competitively slowing the Ba2+ entrance rate, instead of increasing its exit rate by knocking off action. Intracellular spermine (100 microM) reduced, whereas 1 mM [Mg2+]i only slightly reduced, the ability of intracellular K+ to repulse Ba2+ from the channel pore. Intracellular Ba2+ also blocked outward IKir2.1 in a voltage-dependent fashion. At Vm >/= +40 mV, where intrinsic inactivation is prominent, intracellular Ba2+ accelerated the inactivation rate of the outward IKir2.1 in a Vm-independent manner, suggesting interaction of Ba2+ with the intrinsic gate of Kir2.1 channels.  相似文献   

12.
Local anesthetics (LAs) are noncompetitive antagonists of batrachotoxin (BTX) in voltage-gated Na+ channels. The putative LA receptor has been delineated within the transmembrane segment S6 in domain IV of voltage-gated Na+ channels, whereas the putative BTX receptor is within segment S6 in domain I. In this study, we created BTX-resistant muscle Na+ channels at segment I-S6 (micro1-N434K, micro1-L437K) to test whether these residues modulate LA binding. These mutant channels were expressed in transiently transfected human embryonic kidney 293T cells, and their sensitivity to lidocaine, QX-314, etidocaine, and benzocaine was assayed under whole-cell, voltage-clamp conditions. Our results show that LA binding in BTX-resistant micro1 Na+ channels was reduced significantly. At -100 mV holding potential, the reduction in LA affinity was maximal for QX-314 (by 17-fold) and much less for neutral benzocaine (by 2-fold). Furthermore, this reduction was residue specific; substitution of positively charged lysine with negatively charged aspartic acid (micro1-N434D) restored or even enhanced the LA affinity. We conclude that micro1-N434K and micro1-L437K residues located near the middle of the I-S6 segment of Na+ channels can reduce the LA binding affinity without BTX. Thus, this reduction of the LA affinity by point mutations at the BTX binding site is not caused by gating changes induced by BTX alone. We surmise that the BTX receptor and the LA receptor within segments I-S6 and IV-S6, respectively, may align near or within the Na+ permeation pathway.  相似文献   

13.
Unique ATP-inhibitable K+ channels (KATP) in the kidney determine the rate of urinary K+ excretion and play an essential role in extracellular K+ balance. Here, we demonstrate that functionally similar low sulfonylurea affinity KATP channels are formed by two heterologous molecules, products of Kir1.1a and cystic fibrosis transmembrane conductance regulator (CFTR) genes. Co-injection of CFTR and Kir1.1a cRNA into Xenopus oocytes lead to the expression of K+ selective channels that retained the high open probability behavior of Kir1.1a but acquired sulfonylurea sensitivity and ATP-dependent gating properties. Similar to the KATP channels in the kidney but different from KATP channels in excitable tissues, the Kir1.1a/CFTR channel was inhibited by glibenclamide with micromolar affinity. Since the expression of Kir1.1a and CFTR overlap at sites in the kidney where the low sulfonylurea affinity KATP are expressed, our study offers evidence that these native KATP channels are comprised of Kir1.1a and CFTR. The implication that Kir subunits can interact with ABC proteins beyond the subfamily of sulfonylurea receptors provides an intriguing explanation for functional diversity in KATP channels.  相似文献   

14.
The class III antiarrhythmic drug clofilium is known to block diverse delayed rectifier K+ channels at micromolar concentrations. In the present study we investigated the potency of clofilium and its tertiary analog LY97241 to inhibit K+ channels, encoded by the human ether-a-go-go related gene (HERG). Clofilium blocked HERG channels in a voltage-dependent fashion with an IC50 of 250 nM and 150 nM at 0 and +40 mV, respectively. LY97241 was almost 10-fold more potent (IC50 of 19 nM at +40 mV). Other cloned K+ channels which are also expressed in cardiac tissue, Kv1.1, Kv1.2, Kv1.4, Kv1.5, Kv4.2, Kir2.1, or I(Ks), were not affected by 100-fold higher concentrations. Block of HERG channels by LY97241 was voltage dependent and the rate of HERG inactivation was increased by LY97241. A rise of [K+]0 decreased both, rate of HERG inactivation and LY97241 affinity. The HERG S631A and S620T mutant channels which have a strongly reduced degree of inactivation were 7-fold and 33-fold less sensitive to LY97241 blockade, indicating that LY97241 binding is affected by HERG channel inactivation. In summary, the antiarrhythmic action of clofilium and its analog LY97241 appears to be caused by their potent, but distinct ability for blocking HERG channels.  相似文献   

15.
A clone encoding the guinea pig (gp) min K potassium channel was isolated and expressed in Xenopus oocytes. The currents, gpIsK, exhibit many of the electrophysiological and pharmacological properties characteristic of gpIKs, the slow component of the delayed rectifier potassium conductance in guinea pig cardiac myocytes. Depolarizing commands evoke outward potassium currents that activate slowly, with time constants on the order of seconds. The currents are blocked by the class III antiarrhythmic compound clofilium but not by the sotalol derivative E4031 or low concentrations of lanthanum. Like IKs in guinea pig myocytes, gpIsK is modulated by stimulation of protein kinase A and protein kinase C (PKC). In contrast to rat and mouse IsK, which are decreased upon stimulation of PKC, myocyte IK and gpIsK in oocytes are increased after PKC stimulation. Substitution of an asparagine residue at position 102 by serine (N102S), the residue found in the analogous position of the mouse and rat min K proteins, results in decreased gpIsK in response to PKC stimulation. These results support the hypothesis that the min K protein underlies the slow component of the delayed rectifier potassium current in ventricular myocytes and account for the species-specific responses to stimulation of PKC.  相似文献   

16.
Weaver (wv) mice carry a point mutation in the pore region of a G-protein-gated inwardly rectifying K+ channel subunit (Kir3.2). wvKir3.2 conducts inward currents that may cause the loss of neurons in the cerebellum and substantia nigra. Although Kir3.2 is widely expressed in the CNS, significant morphological or physiological changes have not been reported for other brain areas. We studied the role of wvKir3.2 in hippocampal slices of young [postnatal day (P) 4-18] and adult wv/wv (>/=P24) mice, because protein levels of Kir 3. 1 and Kir3.2 appear to be normal in the first 3 postnatal weeks and only decrease thereafter. In disinhibited slices, the GABAB receptor agonist R-baclofen reduced burst activity in wv/wv mice but was much more potent in wild-type mice. Mean resting membrane potential, slope input resistance, and membrane time constant of CA3 neurons of adult wv/wv and wild-type mice were indistinguishable. However, R-baclofen or chloroadenosine did not induce K+ currents or any other conductance change in wv/wv mice. Moreover, electrical or chemical stimulation of inhibitory neurons did not evoke slow IPSPs in adult wv/wv mice. Only in a few cells of young wv/wv mice did GABAB receptor activation by R-baclofen or presynaptic stimulation induce small inward currents, which were likely caused by a Na+ ion influx through wvKir3.2 channels. The data show that the pore mutation in wvKir3.2 channels results in a hippocampal phenotype resembling Kir3.2-deficient mutants, although it is not associated with the occurrence of seizures.  相似文献   

17.
Voltage-gated potassium (K(V)) channels play key roles in setting the resting potential and in the activation cascade of human peripheral T lymphocytes. Margatoxin (MgTX), a 39-amino acid peptide from Centruroides margaritatus, is a potent inhibitor of lymphocyte K(V) channels. The binding of monoiodotyrosinyl margatoxin ([125I]MgTX) to plasma membranes prepared from either Jurkat cells, a human leukemic T cell line, or CHO cells stably transfected with the Shaker-type voltage-gated K+ channel, K(V)1.3, has been used to investigate the properties of lymphocyte K(V) channels. These data were compared with [125I]MgTX binding to heterotetrameric K(V) channels in rat brain synaptic plasma membranes [Knaus, H. G., et al. (1995) Biochemistry 34, 13627-13634]. The affinity for [125I]MgTX is 100-200 fM in either Jurkat or CHO/K(V)1.3 membranes, and the receptor density is 20-120 fmol/mg in Jurkat membranes or 1000 fmol/mg in CHO/K(V)1.3 membranes. In contrast to rat brain, [125I]MgTX binding to Jurkat and CHO/K(V)1.3 membranes exhibits an absolute requirement for K+, with no potentiation of binding by Na+. K(V)1.3 was the only K(V)1 series channel present in either CHO/K(V)1.3 or Jurkat plasma membranes as determined by immunoprecipitation of [125I]MgTX binding or by Western blot analyses using sequence-specific antibodies prepared against members of the K(V)1 family. The relative potencies of a series of peptidyl K(V) channel inhibitors was essentially the same for inhibition of [125I]MgTX binding to Jurkat, CHO, or rat brain membranes and for blocking 86Rb+ efflux from the CHO/K(V)1.3 cells, except that alpha-dendrotoxin was more potent at blocking binding to rat brain membranes than in the other assays. The characteristics of [125I]MgTX binding, the antibody profiles, and the effects of the peptidyl K(V) inhibitors all indicate that the [125I]MgTX receptor in Jurkat lymphocytes is comprised of a homomultimer of K(V)1.3, unlike the heteromultimeric arrangement of the receptor in rat brain.  相似文献   

18.
IKs channels are voltage dependent and K+ selective. They influence cardiac action potential duration through their contribution to myocyte repolarization. Assembled from minK and KvLQT1 subunits, IKs channels are notable for a heteromeric ion conduction pathway in which both subunit types contribute to pore formation. This study was undertaken to assess the effects of minK on pore function. We first characterized the properties of wild-type human IKs channels and channels formed only of KvLQT1 subunits. Channels were expressed in Xenopus laevis oocytes or Chinese hamster ovary cells and currents recorded in excised membrane patches or whole-cell mode. Unitary conductance estimates were dependent on bandwidth due to rapid channel "flicker." At 25 kHz in symmetrical 100-mM KCl, the single-channel conductance of IKs channels was approximately 16 pS (corresponding to approximately 0.8 pA at 50 mV) as judged by noise-variance analysis; this was fourfold greater than the estimated conductance of homomeric KvLQT1 channels. Mutant IKs channels formed with D76N and S74L minK subunits are associated with long QT syndrome. When compared with wild type, mutant channels showed lower unitary currents and diminished open probabilities with only minor changes in ion permeabilities. Apparently, the mutations altered single-channel currents at a site in the pore distinct from the ion selectivity apparatus. Patients carrying these mutant minK genes are expected to manifest decreased K+ flux through IKs channels due to lowered single-channel conductance and altered gating.  相似文献   

19.
ATP-sensitive potassium channels are under complex regulation by intracellular ATP and ADP. The potentiating effect of MgADP is conferred by the sulfonylurea receptor subunit of the channel, SUR, whereas the inhibitory effect of ATP appears to be mediated via the pore-forming subunit, Kir6.2. We determined whether ATP directly interacts with a binding site on the Kir6.2 subunit to mediate channel inhibition by analyzing binding of a photoaffinity analog of ATP (8-azido-[gamma-32P]ATP) to membranes from COS-7 cells transiently expressing Kir6.2. We demonstrate that Kir6.2 can be directly labeled by 8-azido-[gamma-32P]ATP but that the related subunit Kir4.1, which is not inhibited by ATP, is not labeled. Photoaffinity labeling of Kir6.2 is reduced by approximately 50% with 100 microM ATP. In addition, mutations in the NH2 terminus (R50G) and the COOH terminus (K185Q) of Kir6.2, which have both been shown to reduce the inhibitory effect of ATP upon Kir6.2 channel activity, reduced photoaffinity labeling by >50%. These results demonstrate that ATP binds directly to Kir6.2 and that both the NH2- and COOH-terminal intracellular domains may influence ATP binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号