首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Plasmalopsychosine, a characteristic fatty aldehyde conjugate of beta-galactosylsphingosine (psychosine) found in brain white matter, enhances p140trk (Trk A) phosphorylation and mitogen-activated protein kinase (MAPK) activity and as a consequence induces neurite outgrowth in PC12 cells. The effect of plasmalopsychosine on neurite outgrowth and its prolonged activation of MAPK was similar to that of nerve growth factor (NGF), and the effect was specific to neuronal cells. Plasmalopsychosine was not capable of competing with cold chase-stable, high affinity binding of NGF to Trk A, indicating that plasmalopsychosine and NGF differ in terms of Trk A-activating mechanism. Tyrosine kinase inhibitors K-252a and staurosporine, known to inhibit the neurotrophic effect of NGF, also inhibited these effects of plasmalopsychosine, suggesting that plasmalopsychosine and NGF share a common signaling cascade. Plasmalopsychosine prevents apoptosis of PC12 cells caused by serum deprivation, indicating that it has "neurotrophic factor-like" activity. Taken together, these findings indicate that plasmalopsychosine may play an important role in development and maintenance of the vertebrate nervous system.  相似文献   

3.
A novel neuronal model (PC12EN cells), obtained by somatic hybridization of rat adrenal medullary pheochromocytoma (PC12) and bovine adrenal medullary endothelial (BAME) cells, was developed. PC12EN cells maintained numerous neuronal characteristics: they expressed neuronal glycolipid conjugates, synthesized and secreted catecholamines, and responded to differentiative agents with neurite outgrowth. PC12EN lacked receptors for EGF and both the p75 and trk NGF receptors, while FGF receptor expression was maintained. Staurosporine (5-50 nM), but not other members of the K252a family of protein kinase inhibitors, rapidly induced neurite outgrowth in PC12EN, as also found in the parental PC12 cells, but not in BAME cells. Similarly, both acidic and basic FGF (1-100 ng/ml) were neurotropic in PC12EN. In contrast to the mechanism by which FGF promoted neurite outgrowth in PC12EN, the neurotropic effect of staurosporine did not involve activation of established signalling pathways, such as tyrosine phosphorylation of erk (ras pathway) or SNT (a specific target of neuronal differentiation). In addition, staurosporine induced the tyrosine phosphorylation of the focal adhesion kinase p125FAK. However, since the latter effect was also observed with other protein kinase inhibitors of the K252a family, which induced PC12EN cells flattening but no neurite extension, we propose that FAK tyrosine phosphorylation may be related to ubiquitous changes in cell shape. We anticipate that PC12EN neuronal hybrids will become useful models in neuroscience research for evaluating unique cellular signalling mechanisms of novel neurotropic compounds.  相似文献   

4.
Overexpression of a constitutively active mitogen-activated protein kinase kinase (MAPKK or MEK) induces neuronal differentiation in adrenal pheochromocytoma 12 cells but transformation in fibroblasts. In the present study, we used a constitutively active MAPK/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) mutant to investigate the function of the highly conserved MEK1-ERK2 signaling module in renal epithelial cell differentiation and proliferation. Stable expression of constitutively active MEK1 (CA-MEK1) in epithelial MDCK-C7 cells led to an increased basal and serum-stimulated ERK1 and ERK2 phosphorylation as well as ERK2 activation when compared with mock-transfected cells. In both mock-transfected and CA-MEK1-transfected MDCK-C7 cells, basal and serum-stimulated ERK1 and ERK2 phosphorylation was almost abolished by the synthetic MEK inhibitor PD098059. Increased ERK2 activation due to stable expression of CA-MEK1 in MDCK-C7 cells was associated with epithelial dedifferentiation as shown by both a dramatic alteration in cell morphology and an abolished cytokeratin expression but increased vimentin expression. In addition, we obtained a delayed and reduced serum-stimulated cell proliferation in CA-MEK1-transfected cells (4.6-fold increase in cell number/cm2 after 5 days of serum stimulation) as compared with mock-transfected controls (12.9-fold increase in cell number/cm2 after 5 days). This result was confirmed by flow cytometric DNA analysis showing that stable expression of CA-MEK1 decreased the proportion of MDCK-C7 cells moving from G0/G1 to G2/M as compared with both untransfected and mock-transfected cells. Taken together, our data demonstrate an association of increased basal and serum-stimulated activity of the MEK1-ERK2 signaling module with epithelial dedifferentiation and growth inhibition in MDCK-C7 cells. Thus, the MEK1-ERK2 signaling pathway could act as a negative regulator of epithelial differentiation thereby leading to an attenuation of MDCK-C7 cell proliferation.  相似文献   

5.
We have studied nerve growth factor (NGF)-induced differentiation of PC12 cells to identify PKC isozymes important for neuronal differentiation. Previous work showed that tumor-promoting phorbol esters and ethanol enhance NGF-induced mitogen-activated protein (MAP) kinase activation and neurite outgrowth by a PKC-dependent mechanism. Ethanol also increases expression of PKCdelta and PKCepsilon, suggesting that one these isozymes regulates responses to NGF. To examine this possibility, we established PC12 cell lines that express a fragment encoding the first variable domain of PKCepsilon (amino acids 2-144), which acts as an isozyme-specific inhibitor of PKCepsilon in cardiac myocytes. Phorbol ester-stimulated translocation of PKCepsilon was markedly reduced in these PC12 cell lines. In addition, phorbol ester and ethanol did not enhance NGF-induced MAP kinase activation or neurite outgrowth in these cells. In contrast, phorbol ester and ethanol increased neurite outgrowth and MAP kinase phosphorylation in cells expressing a fragment derived from the first variable domain of PKCdelta. These results demonstrate that PKCepsilon mediates enhancement of NGF-induced signaling and neurite outgrowth by phorbol esters and ethanol in PC12 cells.  相似文献   

6.
Adult rat chromaffin cells may proliferate or extend neurites when stimulated by nerve growth factor (NGF) but their response is predominantly proliferative, making them a unique model for studying how mitogenic specificity is achieved. We examined contributions of the NGF receptors trk and p75 and of the major NGF signaling pathways to proliferation versus neurite outgrowth. The type of initial NGF response does not correlate with intensity of immunoreactivity for trk or p75. However, proliferation is initiated at lower NGF concentrations than neurite outgrowth, suggesting that it requires a less intense signal. Mitogenic cooperativity between receptors at low NGF concentrations is suggested by inhibitory effects of p75-blocking antibodies, but responses to trk-agonist antibody indicate that trk activation alone can induce proliferation. NGF-induced phosphorylation of ras-mediated mitogen-activated protein kinases (MAPK) Erk1 and Erk2 is as prolonged in normal chromaffin cells as in PC12 cells, where NGF is neuritogenic. Trk-agonist antibody, which is as mitogenic as NGF but less neuritogenic, causes equally prolonged but less intense ERK phosphorylation. The MAPK kinase(MEK-1) inhibitor PD98059 partially inhibits Erk phosphorylation and does not inhibit chromaffin cell proliferation, while depolarization selectively inhibits proliferation without blocking Erk phosphorylation. Proliferation is markedly reduced by the phosphoinositol-3 (PI-3) kinase inhibitor LY294002 while downregulation of protein kinase C (PKC) causes no change. These findings suggest that low-level, rather than short-duration, stimulation of NGF signaling pathways causes NGF to be mitogenic. Ras-mediated MAPK activation may be more critical in neurite outgrowth than in proliferation and PI-3 kinase may be the major mitogenic determinant.  相似文献   

7.
PC12 cells are used as a model system to study neuronal differentiation. Nerve growth factor (NGF) triggers a differentiation pathway in PC12 cells. Neurite outgrowth (a morphological marker of differentiation) in PC12 cells is significantly reduced in the presence of the NOS inhibitor l-NAME, but not d-NAME, implicating NOS in the differentiation process. Previously we have shown that the neuronal NO synthase (nNOS) isoform is induced in PC12 cells in the presence of NGF. Thus, we wished to further evaluate the role of nNOS and NO in PC12 cell differentiation. When a dominant negative mutant nNOS expression vector was transiently transfected into NGF-treated PC12 cells, it significantly reduced PC12 cell neurite outgrowth. Thus, we concluded that the NO required for PC12 cell differentiation, in response to NGF, is produced by nNOS. NO alone was insufficient to induce differentiation as cells treated with the NO donor, sodium nitroprusside did not produce neurites. Treatment of PC12 cells with oxyhemoglobin (an NO scavenger) was also found to significantly reduce the number of neurites produced by PC12 cells treated with NGF. Thus, NO appears to be necessary, but not sufficient, to induce differentiation, and its mode of action appears to be extracellular. A well documented action of NO is to activate soluble guanylate cyclase. Thus, we determined the role of soluble guanylate cyclase activation as a means by which NO induces PC12 cell differentiation. However, in the presence of NGF (to prime PC12 cells for differentiation) and l-NAME (to specifically remove the NO component), 8Br-cGMP (a cGMP analog) failed to induce PC12 cell differentiation. In addition, blockade of sGC activity with specific inhibitors failed to block NGF-induced PC12 cell differentiation. We conclude that the NO required for PC12 cell differentiation is produced by nNOS and that the NO exerts its effects on surrounding PC12 cells in a sGC/cGMP independent manner.  相似文献   

8.
Culture media from rat basophilic leukemia cells (RBL-2H3) induced the neurite outgrowth of rat pheochromocytoma PC12 cells, a model system for neuronal differentiation. The extension of the neurite outgrowth was dependent on the culture time of RBL-2H3 cells in the DMEM medium. The DMEM medium conditioned by RBL-2H3 cells for 48 h induced neurite outgrowth of PC12 cells significantly. The neurite extension was much higher than that by medium containing 1 ng/ml nerve growth factor (NGF) but was rather lower than that by medium containing 10 or 50 ng/ml NGF. The neurite extension by 50 ng/ml NGF was completely suppressed by excess anti-NGF antibody (1-1.5 microg/ml), while the extension by culture medium conditioned by RBL-2H3 cells for 48 h was not completely suppressed in the presence of the same amount of anti-NGF antibody. The neurite extension by the culture medium of RBL-2H3 cells was also suppressed by anti-interleukin (IL)-6 antibody (1 microg/ml), although IL-6 itself (20 units) could scarcely induce the neurite outgrowth of PC12 cells. This suggests that IL-6 in the culture medium of RBL-2H3 cells could be effective in inducing the neurite extension in cooperation with NGF. In the presence of an excess of both anti-NGF and anti-IL-6 antibodies, the culture medium of RBL-2H3 cells induced the neurite extension of PC12 cells. This suggests that the action of the various factors from RBL-2H3 cells may be synergistic as far as the neurite outgrowth of PC12 cells is concerned.  相似文献   

9.
The mitogen-activated protein kinase (MAPK) family is comprised of key regulatory proteins that control the cellular response to both proliferation and stress signals. In this study we investigated the factors controlling MAPK activation by H2O2 and explored the impact of altering the pathways to kinase activation on cell survival following H2O2 exposure. Potent activation (10-20-fold) of extracellular signal-regulated protein kinase (ERK2) occurred within 10 min of H2O2 treatment, whereupon rapid inactivation ensued. H2O2 activated ERK2 in several cell types and also moderately activated (3-5-fold) both c-Jun N-terminal kinase and p38/RK/CSBP. Additionally, H2O2 increased the mRNA expression of MAPK-dependent genes c-jun, c-fos, and MAPK phosphatase-1. Suramin pretreatment completely inhibited H2O2 stimulation of ERK2, highlighting a role for growth factor receptors in this activation. Further, ERK2 activation by H2O2 was blocked by pretreatment with either N-acetyl-cysteine, o-phenanthroline, or mannitol, indicating that metal-catalyzed free radical formation mediates the initiation of signal transduction by H2O2. H2O2-stimulated activation of ERK2 was abolished in PC12 cells by inducible or constitutive expression of the dominant negative Ras-N-17 allele. Interestingly, PC12/Ras-N-17 cells were more sensitive than wild-type PC12 cells to H2O2 toxicity. Moreover, NIH 3T3 cells expressing constitutively active MAPK kinase (MEK, the immediate upstream regulator of ERK) were more resistant to H2O2 toxicity, while those expressing kinase-defective MEK were more sensitive, than cells expressing wild-type MEK. Taken together, these studies provide insight into mechanisms of MAPK regulation by H2O2 and suggest that ERK plays a critical role in cell survival following oxidant injury.  相似文献   

10.
By transient expression of both truncated forms of p52(SHCA) and those with point mutations in 293T cells, it has been shown that, in addition to Tyr-317, Tyr-239/240 is a major site of phosphorylation that serves as a docking site for Grb2.Sos1 complexes. In addition, analysis of epidermal growth factor (EGF)-induced activation of mitogen-activated protein kinase in 293T cells showed that the overexpression Shc SH2 or phosphotyrosine binding (PTB) domains of ShcA alone has a more potent negative effect than the overexpression of the forms of ShcA lacking Tyr-317 or Tyr 239/240 or both. In transiently transfected PC12 cells, the ShcA PTB domain and tyrosine phosphorylation in the CH1 domain, especially on Tyr-239/240, are crucial for mediating nerve growth factor (NGF)-induced neurite outgrowth. These findings suggest that the EGF and NGF (TrkA) receptor can utilize Shc in different ways to promote their activity. For EGF-induced mitogen-activated protein kinase activation in 293T cells, both Shc PTB and SH2 domains are essential for optimal activation, indicating that a mechanism independent of Grb2 engagement with Shc may exist. For NGF-induced neurite outgrowth in PC12 cells, Shc PTB plays an essential role, and phosphorylation on Tyr-239/240, but not on Tyr-317, is required.  相似文献   

11.
Insulin-like growth factor-I (IGF-I) induces neuronal differentiation in vitro. In the present study, we examined the signaling pathway underlying IGF-I-mediated neurite outgrowth. In SH-SY5Y human neuroblastoma cells, treatment with IGF-I induced concentration- and time-dependent tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and extracellular signal-regulated protein kinases (ERK) 1 and 2. These effects of IGF-I were blocked by a neutralizing antibody against IGF-IR. Whereas IGF-IR phosphorylation was observed within 1 min, maximal phosphorylation of ERKs was not reached for 30 min. Both IGF-IR and ERK phosphorylation were maintained for at least 24 h. Also, the concentration dependence of IGF-I-stimulated IGF-IR and ERK tyrosine phosphorylation paralleled that of IGF-I-mediated neurite outgrowth. We further examined the role of mitogen-activated protein kinase activation in IGF-I-stimulated neuronal differentiation using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059. Whereas PD98059 had no effect on IGF-IR phosphorylation, PD98059 reduced IGF-I-mediated ERK tyrosine phosphorylation and ERK phosphorylation of the substrate Elk-1. PD98059 also produced a parallel reduction of IGF-I-stimulated neurite outgrowth. Finally, consistent with its ability to block neuronal differentiation, PD98059 inhibited IGF-I-dependent changes of GAP-43 and c-myc gene expression. Together these results suggest that activation of ERKs is essential for IGF-I-stimulated neuronal differentiation.  相似文献   

12.
Nerve growth factor (NGF) initiates its biological effects by promoting the dimerization and activation of the tyrosine kinase receptor TrkA. The requirements for NGF signaling through the TrkA receptor have been defined extensively from studies in immortalized cells, involving transfection of NIH 3T3, COS, and PC12 cells. In the present study, we tested the effects of extracellular and intracellular mutations of TrkA after DNA-mediated transfection in primary cultures of embryonic day 17 hippocampal neurons. We found that the action of the TrkA receptor on neuronal differentiation depends on specific motifs in the extracellular domain and on tyrosine 490 (Y490), the site for SHC protein binding. In contrast with previous observations in a PC12 background, a mutation in the SHC Y490 binding site in TrkA resulted in a loss of NGF-dependent process formation. These results indicate that tyrosine 490 is necessary for neurite outgrowth in hippocampal neurons. Moreover, a constitutively active form of TrkA did not give enhanced responsiveness in hippocampal neurons, indicating that the behavior of TrkA receptors in primary neuronal cells is distinct from that of other cell types.  相似文献   

13.
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.  相似文献   

14.
Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+ . Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

15.
We have shown that the binding of simian immunodeficiency virus (SIV) to Jurkat T cells expressing CD4 receptor strongly induces mitogen-activated protein (MAP) kinase kinase (MEK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) and only weakly induces p38 MAP kinase and c-Jun N-terminal kinase (JNK). Similarly, T-tropic NL4-3 virus, which uses both CD4 and CXCR4 receptors for entry, stimulated in these cells the MEK/ERK MAP kinase (MAPK) pathway in a CD4 receptor-dependent manner (Popik and Pitha, 1998). In contrast, both macrophage-tropic SIVmac316 and T cell-tropic SIVmac239, which in addition to CD4 require CCR5 coreceptor for entry, significantly enhanced early MEK/ERK, p38 MAPK, and JNK signaling in Jurkat cells expressing constitutively or transiently the CCR5 receptor. Together, this study provides the evidence that viruses using CXCR4 or CCR5 receptors for entry may differentially use signaling properties of their specific coreceptors to stimulate MAP kinase cascades. In addition, although SIVmac239 and SIVmac316 use different structural domains of the CCR5 receptor for entry, both viruses stimulate early phosphorylation of MEK, ERK, p38, and JNK independently of their tropism and replication.  相似文献   

16.
17.
Extracellular signal-regulated protein kinases (ERKs) constitute a family of protein serine-threonine kinases implicated in a variety of cell-signaling pathways. In cultured rat pheochromocytoma PC12 cells, ERK1 and ERK2 are activated by nerve growth factor (NGF), which also induces rapid association between ERK1 and the high affinity gp140prototrk tyrosine kinase NGF receptor. In the present work, we investigated the possible association between ERKs and the low affinity NGF receptor, p75. Extracts of PC12 cells (before and after NGF treatment) were subjected to immunoprecipitation with anti-p75 antibodies or antiserum; the immune complexes were then assessed for the presence of ERK proteins and tyrosine phosphorylation or for ERK activity using a specific substrate peptide. ERK1 and, to a lesser extent, ERK2 were found to be constitutively associated with p75. NGF did not modulate the total amount of ERK proteins coimmunoprecipitated with p75 but did markedly stimulate the level of p75-associated ERK catalytic activity. NGF treatment also enhanced the tyrosine phosphorylation of a p75-associated species that co-migrates with ERK1 in Western blots. Finally, K-252a, a compound that specifically inhibits activation by NGF of gp140prototrk, abolished the latter effect. These findings indicate that NGF, via activation of gp140prototrk, leads to association of enzymatically active ERKs with p75 and raise the possibility that this interaction may play a role in the NGF mechanism of action.  相似文献   

18.
The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors--in contrast to p75NTR-associated signaling--stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

19.
Angiotensin AT2 receptors have been shown to play a role in cell differentiation characterized by neurite outgrowth in neuronal cells of different origin. To further investigate AT2 receptor-mediated events leading to neurite formation, we examined the effect of AT2 receptor stimulation on the microtubule components, beta-tubulin, MAP1B and MAP2, by Western blot analysis and immunofluorescence in quiescent and nerve growth factor (NGF)-differentiated PC12W cells. These proteins are involved in neurite extension and neuronal maturation. Whereas NGF (0.5, 10, and 50 ng/ml) up-regulated these proteins after 3 days of stimulation, angiotensin II (ANG II; 10(-7) M) induced a different pattern. In quiescent PC12W cells, AT2 receptor stimulation up-regulated polymerized beta-tubulin and MAP2 but down-regulated MAP1B protein levels. In PC12W cells, differentiated by NGF (0.5 ng/ml), ANG II elevated polymerized beta-tubulin and reduced MAP1B. All ANG II effects were abolished by the AT2 receptor antagonist PD123177 (10(-5) M) but not affected by the AT1 receptor antagonist losartan (10(-5) M). These results implicate a specific role of AT2 receptors in cell differentiation and nerve regeneration via regulation of the cytoskeleton.  相似文献   

20.
Fibroblast growth factor 1 (FGF-1) induces neurite outgrowth in PC12 cells. Recently, we have shown that the FGF receptor 1 (FGFR-1) is much more potent than FGFR-3 in induction of neurite outgrowth. To identify the cytoplasmic regions of FGFR-1 that are responsible for the induction of neurite outgrowth in PC12 cells, we took advantage of this difference and prepared receptor chimeras containing different regions of the FGFR-1 introduced into the FGFR-3 protein. The chimeric receptors were introduced into FGF-nonresponsive variant PC12 cells (fnr-PC12 cells), and their ability to mediate FGF-stimulated neurite outgrowth of the cells was assessed. The juxtamembrane (JM) and carboxy-terminal (COOH) regions of FGFR-1 were identified as conferring robust and moderate abilities, respectively, for induction of neurite outgrowth to FGFR-3. Analysis of FGF-stimulated activation of signal transduction revealed that the JM region of FGFR-1 conferred strong and sustained tyrosine phosphorylation of several cellular proteins and activation of MAP kinase. The SNT/FRS2 protein was demonstrated to be one of the cellular substrates preferentially phosphorylated by chimeras containing the JM domain of FGFR-1. SNT/FRS2 links FGF signaling to the MAP kinase pathway. Thus, the ability of FGFR-1 JM domain chimeras to induce strong sustained phosphorylation of this protein would explain the ability of these chimeras to activate MAP kinase and hence neurite outgrowth. The role of the COOH region of FGFR-1 in induction of neurite outgrowth involved the tyrosine residue at amino acid position 764, a site required for phospholipase C gamma binding and activation, whereas the JM region functioned primarily through a non-phosphotyrosine-dependent mechanism. In contrast, assessment of the chimeras in the pre-B lymphoid cell line BaF3 for FGF-1-induced mitogenesis revealed that the JM region did not play a role in this cell type. These data indicate that FGFR signaling can be regulated at the level of intracellular interactions and that signaling pathways for neurite outgrowth and mitogenesis use different regions of the FGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号